Do you want to publish a course? Click here

Quantum correlations dynamics under different non-markovian environmental models

207   0   0.0 ( 0 )
 Added by Yingjie Zhang
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lorentzian model, the two-Lorentzian model and band-gap model) are analyzed. First, we note that for the weak coupling regime, the monotonous decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation depends on the non-Markovianity of the environmental models, and is independent of the environmental spectrum density functions.



rate research

Read More

We investigate the dynamics of quantum correlations (QC) under the effects of reservoir memory, as a resource for quantum information and computation tasks. Quantum correlations of two-qubit systems are used for implementing quantum teleportation successfully, and for investigating how teleportation fidelity, violation of Bell-CHSH inequality, quantum steering and entanglement are connected with each other under the influence of noisy environments. Both Markovian and non-Markovian channels are considered, and it is shown that the decay and revival of correlations follow the hierarchy of quantum correlations in the state space. Noise tolerance of quantum correlations are checked for different types of unital and non-unital quantum channels, with and without memory. The quantum speed limit time $(tau_{QSL})$ is investigated from the perspective of memory of quantum noise, and the corresponding dynamics is used to analyze the evolution of quantum correlations. We establish the connection between information backflow, quantum speed limit time and dynamics of quantum correlations for non-Markovian quantum channels.
We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed ancillas, which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of memory depth where these correlations are established between the system and a suitably sized memory rendering the overall system+memory evolution Markovian. We extend our analysis to show that while most system-environment correlations are irrelevant for the dynamical characterization of the process, they generally play an important role in the thermodynamic description. Finally, we show that under an energy-preserving system-environment interaction, a non-monotonic time behaviour of the heat flux serves as an indicator of non-Markovian behaviour.
128 - Z. Y. Xu , S. Q. Zhu 2013
Quantum speed limit (QSL) under noise has drawn considerable attention in real quantum computational processes and quantum communication. Though non-Markovian noise is proven to be able to accelerate quantum evolution for a damped Jaynes-Cummings model, in this work we show that non-Markovianity may even slow down the quantum evolution of an experimentally controllable photon system. As an important application, QSL time of a photon can be well controlled by regulating the relevant environment parameter properly, which is close to reach the currently available photonic experimental technology.
Characterizing the memory properties of the environment has become critical for the high-fidelity control of qubits and other advanced quantum systems. However, current non-Markovian tomography techniques are either limited to discrete superoperators, or they employ machine learning methods, neither of which provide physical insight into the dynamics of the quantum system. To circumvent this limitation, we design learning architectures that explicitly encode physical constraints like the properties of completely-positive trace-preserving maps in a differential form. This method preserves the versatility of the machine learning approach without sacrificing the efficiency and fidelity of traditional parameter estimation methods. Our approach provides the physical interpretability that machine learning and opaque superoperators lack. Moreover, it is aware of the underlying continuous dynamics typically disregarded by superoperator-based tomography. This paradigm paves the way to noise-aware optimal quantum control and opens a path to exploiting the bath as a control and error mitigation resource.
Controlling the non-Markovian dynamics of open quantum systems is essential in quantum information technology since it plays a crucial role in preserving quantum memory. Albeit in many realistic scenarios the quantum system can simultaneously interact with composite environments, this condition remains little understood, particularly regarding the effect of the coupling between environmental parts. We analyze the non-Markovian behavior of a qubit interacting at the same time with two coupled single-mode cavities which in turn dissipate into memoryless or memory-keeping reservoirs. We show that increasing the control parameter, that is the two-mode coupling, allows for triggering and enhancing a non-Markovian dynamics for the qubit starting from a Markovian one in absence of coupling. Surprisingly, if the qubit dynamics is non-Markovian for zero control parameter, increasing the latter enables multiple transitions from non-Markovian to Markovian regimes. These results hold independently on the nature of the reservoirs. This work highlights that suitably engineering the coupling between parts of a compound environment can efficiently harness the quantum memory, stored in a qubit, based on non-Markovianity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا