No Arabic abstract
We present a method for combining the data retrieved by multiple coils of a Magnetic Resonance Imaging (MRI) system with the a priori assumption of compressed sensing to reconstruct a single image. The final image is the result of an optimization problem that only includes constraints based on fundamental physics (Maxwells equations and the Biot-Savart law) and accepted phenomena (e.g. sparsity in the Wavelet domain). The problem is solved using an alternating minimization approach: two convex optimization problems are alternately solved, one with the Fast Iterative Shrinkage Threshold Algorithm (FISTA) and the other with the Primal-Dual Hybrid Gradient (PDHG) method. We show results on simulated data as well as data of the knee, brain, and ankle. In all cases studied, results from the new algorithm show higher quality and increased detail when compared to conventional reconstruction algorithms.
Recent works have demonstrated that deep learning (DL) based compressed sensing (CS) implementation can accelerate Magnetic Resonance (MR) Imaging by reconstructing MR images from sub-sampled k-space data. However, network architectures adopted in previous methods are all designed by handcraft. Neural Architecture Search (NAS) algorithms can automatically build neural network architectures which have outperformed human designed ones in several vision tasks. Inspired by this, here we proposed a novel and efficient network for the MR image reconstruction problem via NAS instead of manual attempts. Particularly, a specific cell structure, which was integrated into the model-driven MR reconstruction pipeline, was automatically searched from a flexible pre-defined operation search space in a differentiable manner. Experimental results show that our searched network can produce better reconstruction results compared to previous state-of-the-art methods in terms of PSNR and SSIM with 4-6 times fewer computation resources. Extensive experiments were conducted to analyze how hyper-parameters affect reconstruction performance and the searched structures. The generalizability of the searched architecture was also evaluated on different organ MR datasets. Our proposed method can reach a better trade-off between computation cost and reconstruction performance for MR reconstruction problem with good generalizability and offer insights to design neural networks for other medical image applications. The evaluation code will be available at https://github.com/yjump/NAS-for-CSMRI.
In applications of scanning probe microscopy, images are acquired by raster scanning a point probe across a sample. Viewed from the perspective of compressed sensing (CS), this pointwise sampling scheme is inefficient, especially when the target image is structured. While replacing point measurements with delocalized, incoherent measurements has the potential to yield order-of-magnitude improvements in scan time, implementing the delocalized measurements of CS theory is challenging. In this paper we study a partially delocalized probe construction, in which the point probe is replaced with a continuous line, creating a sensor which essentially acquires line integrals of the target image. We show through simulations, rudimentary theoretical analysis, and experiments, that these line measurements can image sparse samples far more efficiently than traditional point measurements, provided the local features in the sample are enough separated. Despite this promise, practical reconstruction from line measurements poses additional difficulties: the measurements are partially coherent, and real measurements exhibit nonidealities. We show how to overcome these limitations using natural strategies (reweighting to cope with coherence, blind calibration for nonidealities), culminating in an end-to-end demonstration.
Segmentation of multiple organs-at-risk (OARs) is essential for radiation therapy treatment planning and other clinical applications. We developed an Automated deep Learning-based Abdominal Multi-Organ segmentation (ALAMO) framework based on 2D U-net and a densely connected network structure with tailored design in data augmentation and training procedures such as deep connection, auxiliary supervision, and multi-view. The model takes in multi-slice MR images and generates the output of segmentation results. Three-Tesla T1 VIBE (Volumetric Interpolated Breath-hold Examination) images of 102 subjects were collected and used in our study. Ten OARs were studied, including the liver, spleen, pancreas, left/right kidneys, stomach, duodenum, small intestine, spinal cord, and vertebral bodies. Two radiologists manually labeled and obtained the consensus contours as the ground-truth. In the complete cohort of 102, 20 samples were held out for independent testing, and the rest were used for training and validation. The performance was measured using volume overlapping and surface distance. The ALAMO framework generated segmentation labels in good agreement with the manual results. Specifically, among the 10 OARs, 9 achieved high Dice Similarity Coefficients (DSCs) in the range of 0.87-0.96, except for the duodenum with a DSC of 0.80. The inference completes within one minute for a 3D volume of 320x288x180. Overall, the ALAMO model matches the state-of-the-art performance. The proposed ALAMO framework allows for fully automated abdominal MR segmentation with high accuracy and low memory and computation time demands.
Modern reconstruction methods for magnetic resonance imaging (MRI) exploit the spatially varying sensitivity profiles of receive-coil arrays as additional source of information. This allows to reduce the number of time-consuming Fourier-encoding steps by undersampling. The receive sensitivities are a priori unknown and influenced by geometry and electric properties of the (moving) subject. For optimal results, they need to be estimated jointly with the image from the same undersampled measurement data. Formulated as an inverse problem, this leads to a bilinear reconstruction problem related to multi-channel blind deconvolution. In this work, we will discuss some recently developed approaches for the solution of this problem.
Compressed sensing proposes to reconstruct more degrees of freedom in a signal than the number of values actually measured. Compressed sensing therefore risks introducing errors -- inserting spurious artifacts or masking the abnormalities that medical imaging seeks to discover. The present case study of estimating errors using the standard statistical tools of a jackknife and a bootstrap yields error bars in the form of full images that are remarkably representative of the actual errors (at least when evaluated and validated on data sets for which the ground truth and hence the actual error is available). These images show the structure of possible errors -- without recourse to measuring the entire ground truth directly -- and build confidence in regions of the images where the estimated errors are small.