Do you want to publish a course? Click here

Density matrices in quantum gravity

106   0   0.0 ( 0 )
 Added by Jorrit Kruthoff
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study density matrices in quantum gravity, focusing on topology change. We argue that the inclusion of bra-ket wormholes in the gravity path integral is not a free choice, but is dictated by the specification of a global state in the multi-universe Hilbert space. Specifically, the Hartle-Hawking (HH) state does not contain bra-ket wormholes. It has recently been pointed out that bra-ket wormholes are needed to avoid potential bags-of-gold and strong subadditivity paradoxes, suggesting a problem with the HH state. Nevertheless, in regimes with a single large connected universe, approximate bra-ket wormholes can emerge by tracing over the unobserved universes. More drastic possibilities are that the HH state is non-perturbatively gauge equivalent to a state with bra-ket wormholes, or that the third-quantized Hilbert space is one-dimensional. Along the way we draw some helpful lessons from the well-known relation between worldline gravity and Klein-Gordon theory. In particular, the commutativity of boundary-creating operators, which is necessary for constructing the alpha states and having a dual ensemble interpretation, is subtle. For instance, in the worldline gravity example, the Klein-Gordon field operators do not commute at timelike separation.



rate research

Read More

We investigate the ultraviolet behaviour of quantum gravity within a functional renormalisation group approach. The present setup includes the full ghost and graviton propagators and, for the first time, the dynamical graviton three-point function. The latter gives access to the coupling of dynamical gravitons and makes the system minimally self-consistent. The resulting phase diagram confirms the asymptotic safety scenario in quantum gravity with a non-trivial UV fixed point. A well-defined Wilsonian block spinning requires locality of the flow in momentum space. This property is discussed in the context of functional renormalisation group flows. We show that momentum locality of graviton correlation functions is non-trivially linked to diffeomorphism invariance, and is realised in the present setup.
In this paper we use the AdS/CFT correspondence to refine and then establish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dual would lead to an inconsistency in that CFT, and thus that there are no bulk global symmetries in AdS/CFT. We then argue that any long-range bulk gauge symmetry leads to a global symmetry in the boundary CFT, whose consistency requires the existence of bulk dynamical objects which transform in all finite-dimensional irreducible representations of the bulk gauge group. We mostly assume that all internal symmetry groups are compact, but we also give a general condition on CFTs, which we expect to be true quite broadly, which implies this. We extend all of these results to the case of higher-form symmetries. Finally we extend a recently proposed new motivation for the weak gravity conjecture to more general gauge groups, reproducing the convex hull condition of Cheung and Remmen. An essential point, which we dwell on at length, is precisely defining what we mean by gauge and global symmetries in the bulk and boundary. Quantum field theory results we meet while assembling the necessary tools include continuous global symmetries without Noether currents, new perspectives on spontaneous symmetry-breaking and t Hooft anomalies, a new order parameter for confinement which works in the presence of fundamental quarks, a Hamiltonian lattice formulation of gauge theories with arbitrary discrete gauge groups, an extension of the Coleman-Mandula theorem to discrete symmetries, and an improved explanation of the decay $pi^0togamma gamma$ in the standard model of particle physics. We also describe new black hole solutions of the Einstein equation in $d+1$ dimensions with horizon topology $mathbb{T}^ptimes mathbb{S}^{d-p-1}$.
We study the impact of quantum gravity on a system of chiral fermions that are charged under an Abelian gauge group. Under the impact of quantum gravity, a finite value of the gauge coupling could be generated and in turn drive four-fermion interactions to criticality. We find indications that the gravity-gauge-fermion interplay protects the lightness of fermions for a large enough number of fermions. On the other hand, for a smaller number of fermions, chiral symmetry may be broken, which would be in tension with the observation of light fermions.
We compute the one-loop divergences in a higher-derivative theory of gravity including Ricci tensor squared and Ricci scalar squared terms, in addition to the Hilbert and cosmological terms, on an (generally off-shell) Einstein background. We work with a two-parameter family of parametrizations of the graviton field, and a two-parameter family of gauges. We find that there are some choices of gauge or parametrization that reduce the dependence on the remaining parameters. The results are invariant under a recently discovered duality that involves the replacement of the densitized metric by a densitized inverse metric as the fundamental quantum variable.
The divergent part of the one-loop Vilkovisky unique effective action for quantum Einstein gravity is evaluated in the general parametrization of the quantum field, including the separated conformal factor. The output of this calculation explicitly demonstrates the parametrization and conformal gauge independence of the unique effective action with the configuration space metric chosen following Vilkoviskys prescription.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا