Do you want to publish a course? Click here

Light charged fermions in quantum gravity

107   0   0.0 ( 0 )
 Added by Gustavo Brito
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the impact of quantum gravity on a system of chiral fermions that are charged under an Abelian gauge group. Under the impact of quantum gravity, a finite value of the gauge coupling could be generated and in turn drive four-fermion interactions to criticality. We find indications that the gravity-gauge-fermion interplay protects the lightness of fermions for a large enough number of fermions. On the other hand, for a smaller number of fermions, chiral symmetry may be broken, which would be in tension with the observation of light fermions.

rate research

Read More

We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works cite{Christiansen:2015rva, Meibohm:2015twa}, concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models, regardless of the number of fermion flavours. This suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
91 - Ya. I. Azimov 2015
Discussion of physical realization of coordinates demonstrates that the quantum theory of gravity (still absent) should be non-local and, probably, non-commutative as well.
The effect of gravitational fluctuations on the quantum effective potential for scalar fields is a key ingredient for predictions of the mass of the Higgs boson, understanding the gauge hierarchy problem and a possible explanation of an---asymptotically---vanishing cosmological constant. We find that the quartic self-interaction of the Higgs scalar field is an irrelevant coupling at the asymptotically safe ultraviolet fixed point of quantum gravity. This renders the ratio between the masses of the Higgs boson and top quark predictable. If the flow of couplings below the Planck scale is approximated by the Standard Model, this prediction is consistent with the observed value. The quadratic term in the Higgs potential is irrelevant if the strength of gravity at short distances exceeds a bound that is determined here as a function of the particle content. In this event, a tiny value of the ratio between the Fermi scale and the Planck scale is predicted.
We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the $J=2$ partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.
Recently it has been shown that infrared divergences in the conventional S-matrix elements of gauge and gravitational theories arise from a violation of the conservation laws associated with large gauge symmetries. These infrared divergences can be cured by using the Faddeev-Kulish (FK) asymptotic states as the basis for S-matrix elements. Motivated by this connection, we study the action of BMS supertranslations on the FK asymptotic states of perturbative quantum gravity. We compute the BMS charge of the FK states and show that it characterizes the superselection sector to which the state belongs. Conservation of the BMS charge then implies that there is no transition between different superselection sectors, hence showing that the FK graviton clouds implement the necessary vacuum transition induced by the scattering process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا