Do you want to publish a course? Click here

Fourier DiffuserScope: Single-shot 3D Fourier light field microscopy with a diffuser

174   0   0.0 ( 0 )
 Added by Fanglin Linda Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Light field microscopy (LFM) uses a microlens array (MLA) near the sensor plane of a microscope to achieve single-shot 3D imaging of a sample without any moving parts. Unfortunately, the 3D capability of LFM comes with a significant loss of lateral resolution at the focal plane. Placing the MLA near the pupil plane of the microscope, instead of the image plane, can mitigate the artifacts and provide an efficient forward model, at the expense of field-of-view (FOV). Here, we demonstrate improved resolution across a large volume with Fourier DiffuserScope, which uses a diffuser in the pupil plane to encode 3D information, then computationally reconstructs the volume by solving a sparsity-constrained inverse problem. Our diffuser consists of randomly placed microlenses with varying focal lengths; the random positions provide a larger FOV compared to a conventional MLA, and the diverse focal lengths improve the axial depth range. To predict system performance based on diffuser parameters, we for the first time establish a theoretical framework and design guidelines, which are verified by numerical simulations, then build an experimental system that achieves $< 3$ um lateral and $4$ um axial resolution over a $1000 times 1000 times 280$ um$^3$ volume. Our diffuser design outperforms the MLA used in LFM, providing more uniform resolution over a larger volume, both laterally and axially.

rate research

Read More

In previous single-pixel imaging systems, the light source was generally idle with respect to time. Here, we propose a novel image fusion and visible watermarking scheme based on Fourier single-pixel imaging (FSPI) with a multiplexed time-varying (TV) signal, which is generated by the watermark pattern hidden in the light source. We call this scheme as TV-FSPI. With TV-FSPI, we can realize high-quality visible image watermarking, encrypted image watermarking and full-color visible image watermarking. We also discuss the extension to invisible watermarking based on TV-FSPI. Furthermore, we dont have to recode illumination patterns, because TV-FSPI can be extended to existing mainstream illumination patterns, such as random illumination mode and Hadamard illumination mode. Thus TV-FSPI has the potential to be used in single-pixel broadcasting system and multi-spectral single-pixel imaging system.
Miniature fluorescence microscopes are a standard tool in systems biology. However, widefield miniature microscopes capture only 2D information, and modifications that enable 3D capabilities increase the size and weight and have poor resolution outside a narrow depth range. Here, we achieve the 3D capability by replacing the tube lens of a conventional 2D Miniscope with an optimized multifocal phase mask at the objectives aperture stop. Placing the phase mask at the aperture stop significantly reduces the size of the device, and varying the focal lengths enables a uniform resolution across a wide depth range. The phase mask encodes the 3D fluorescence intensity into a single 2D measurement, and the 3D volume is recovered by solving a sparsity-constrained inverse problem. We provide methods for designing and fabricating the phase mask and an efficient forward model that accounts for the field-varying aberrations in miniature objectives. We demonstrate a prototype that is 17 mm tall and weighs 2.5 grams, achieving 2.76 $mu$m lateral, and 15 $mu$m axial resolution across most of the 900x700x390 $mu m^3$ volume at 40 volumes per second. The performance is validated experimentally on resolution targets, dynamic biological samples, and mouse brain tissue. Compared with existing miniature single-shot volume-capture implementations, our system is smaller and lighter and achieves a more than 2x better lateral and axial resolution throughout a 10x larger usable depth range. Our microscope design provides single-shot 3D imaging for applications where a compact platform matters, such as volumetric neural imaging in freely moving animals and 3D motion studies of dynamic samples in incubators and lab-on-a-chip devices.
Following the recent developement of Fourier ptychographic microscopy (FPM) in the visible range by Zheng et al. (2013), we propose an adaptation for hard x-rays. FPM employs ptychographic reconstruction to merge a series of low-resolution, wide field of view images into a high-resolution image. In the x-ray range this opens the possibility to overcome the limited numerical aperture of existing x-ray lenses. Furthermore, digital wave front correction (DWC) may be used to charaterize and correct lens imperfections. Given the diffraction limit achievable with x-ray lenses (below 100 nm), x-ray Fourier ptychographic microscopy (XFPM) should be able to reach resolutions in the 10 nm range.
Single-pixel cameras based on the concepts of compressed sensing (CS) leverage the inherent structure of images to retrieve them with far fewer measurements and operate efficiently over a significantly broader spectral range than conventional silicon-based cameras. Recently, photonic time-stretch (PTS) technique facilitates the emergence of high-speed single-pixel cameras. A significant breakthrough in imaging speed of single-pixel cameras enables observation of fast dynamic phenomena. However, according to CS theory, image reconstruction is an iterative process that consumes enormous amounts of computational time and cannot be performed in real time. To address this challenge, we propose a novel single-pixel imaging technique that can produce high-quality images through rapid acquisition of their effective spatial Fourier spectrum. We employ phase-shifting sinusoidal structured illumination instead of random illumination for spectrum acquisition and apply inverse Fourier transform to the obtained spectrum for image restoration. We evaluate the performance of our prototype system by recognizing quick response (QR) codes and flow cytometric screening of cells. A frame rate of 625 kHz and a compression ratio of 10% are experimentally demonstrated in accordance with the recognition rate of the QR code. An imaging flow cytometer enabling high-content screening with an unprecedented throughput of 100,000 cells/s is also demonstrated. For real-time imaging applications, the proposed single-pixel microscope can significantly reduce the time required for image reconstruction by two orders of magnitude, which can be widely applied in industrial quality control and label-free biomedical imaging.
It is shown that a classical optical Fourier processor can be used for the shaping of quantum correlations between two or more photons, and the class of Fourier masks applicable in the multiphoton Fourier space is identified. This concept is experimentally demonstrated using two types of periodic phase masks illuminated with path-entangled photon pairs, a highly non-classical state of light. Applied first were sinusoidal phase masks, emulating two-particle quantum walk on a periodic lattice, yielding intricate correlation patterns with various spatial bunching and anti-bunching effects depending on the initial state. Then, a periodic Zernike-like filter was applied on top of the sinusoidal phase masks. Using this filter, phase information lost in the original correlation measurements was retrieved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا