Do you want to publish a course? Click here

Magnetic and transport properties in magnetic topological insulators MnBi2Te4(Bi2Te3)n (n=1,2)

89   0   0.0 ( 0 )
 Added by X. H. Chen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The observation of quantized anomalous Hall conductance in the forced ferromagnetic state of MnBi2Te4 thin flakes has attracted much attentions. However, strong magnetic field is needed to fully polarize the magnetic moments due to the large antiferromagnetic interlayer exchange coupling. Here, we reported the magnetic and electrical transport properties of the magnetic van der Waals MnBi2Te4(Bi2Te3)n (n=1,2) single crystals, in which the interlayer antiferromagnetic exchange coupling is greatly suppressed with the increase of the separation layers Bi2Te3. MnBi4Te7 and MnBi6Te10 show weak antiferromagnetic transition at 12.3 and 10.5 K, respectively. The ferromagnetic hysteresis was observed at low temperature for both of the crystals, which is quite crucial for realizing the quantum anomalous Hall effect without external magnetic field. Our work indicates that MnBi2Te4(Bi2Te3)n (n=1,2) provide ideal platforms to investigate the rich topological phases with going to their 2D limits.



rate research

Read More

The magnetic structures of MnBi2Te4(Bi2Te3)n can be manipulated by tuning the interlayer coupling via the number of Bi2Te3 spacer layers n, while the intralayer ferromagnetic (FM) exchange coupling is considered too robust to control. By applying hydrostatic pressure up to 3.5 GPa, we discover opposite responses of magnetic properties for n = 1 and 2. MnBi4Te7 stays at A-type antiferromagnetic (AFM) phase with a decreasing Neel temperature and an increasing saturation field. In sharp contrast, MnBi6Te10 experiences a phase transition from A-type AFM to a quasi-two-dimensional FM state with a suppressed saturation field under pressure. First-principles calculations reveal the essential role of intralayer exchange coupling from lattice compression in determining these magnetic properties. Such magnetic phase transition is also observed in 20% Sb-doped MnBi6Te10 due to the in-plane lattice compression.
128 - Young-Joon Song , K.-W. Lee 2020
Using both an effective three-band model and {it ab initio} calculations, we have investigated various topological features in the cubic ferromagnetic $5d^{1,2}$ systems showing large spin-orbit coupling (SOC): Ba$_2$NaOsO$_6$, Sr$_2$SrOsO$_6$, and Ba$_2$$B$ReO$_6$ ($B$= Mg, Zn). In the presence of time-reversal symmetry (${cal T}$), spinless Dirac nodal loops linked to each other at the $W$ points appear in the mirror planes. Remarkably, breaking ${cal T}$ leads to spinful magnetic Weyl nodal loops (MWNLs) that are robust even at large SOC and correlation strength $U$ variation due to the combination of mirror symmetry and broken ${cal T}$. Additionally, there are two types of magnetic Weyl points with chiral charges $|chi|=1, 2$ along the $C_{4v}$ symmetry line, and another type-II MWNL encircling the zone center, that are dependent on $U$. Furthermore, the ferromagnetic Ba$_2$ZnReO$_6$ is an ideal half semimetal with MWNLs and magnetic Weyl nodes at the Fermi level without the interference of topologically trivial bulk states. These systems give rise to a remarkably large anomalous Hall conductivity $sigma_{xy}$ of up to 1160 ($Omega$cm)$^{-1}$. Our findings may apply widely for $t_{2g}$ systems with cubic (or slightly distorted) fcc-like structures.
Room temperature ferromagnetism was observed in n-type Fe-doped In2O3 thin films deposited on c-cut sapphire substrates by pulsed laser deposition. Structure, magnetism, composition, and transport studies indicated that Fe occupied the In sites of the In2O3 lattice rather than formed any metallic Fe or other magnetic impurity phases. Magnetic moments of films were proved to be intrinsic and showed to have a strong dependence on the carrier densities which depended on the Fe concentration and its valance state as well as oxygen pressure.
Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synthesis of high-quality MnBi2Te4 single crystals by solid-state reactions. The as-grown MnBi2Te4 single crystal exhibits a van der Waals layered structure, which is composed of septuple Te-Bi-Te-Mn-Te-Bi-Te sequences as determined by powder X-ray diffraction (PXRD) and high-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The magnetic order below 25 K as a consequence of A-type antiferromagnetic interaction between Mn layers in the MnBi2Te4 crystal suggests the unique interplay between antiferromagnetism and topological quantum states. The transport measurements of MnBi2Te4 single crystals further confirm its magnetic transition. Moreover, the unstable surface of MnBi2Te4, which is found to be easily oxidized in air, deserves attention for onging research on few-layer samples. This study on the first AFM TI of MnBi2Te4 will guide the future research on other potential candidates in the MBixTey family (M = Ni, V, Ti, etc.).
Magnetic interaction with the gapless surface states in topological insulator (TI) has been predicted to give rise to a few exotic quantum phenomena. However, the effective magnetic doping of TI is still challenging in experiment. Using first-principles calculations, the magnetic doping properties (V, Cr, Mn and Fe) in three strong TIs (Bi$_{2}$Se$_{3}$, Bi$_{2}$Te$_{3}$ and Sb$_{2}$Te$_{3}$) are investigated. We find that for all three TIs the cation-site substitutional doping is most energetically favorable with anion-rich environment as the optimal growth condition. Further our results show that under the nominal doping concentration of 4%, Cr and Fe doped Bi$_{2}$Se$_{3}$, Bi$_{2}$Te$_{3}$, and Cr doped Sb$_{2}$Te$_{3}$ remain as insulator, while all TIs doped with V, Mn and Fe doped Sb$_{2}$Te$_{3}$ become metal. We also show that the magnetic interaction of Cr doped Bi$_{2}$Se$_{3}$ tends to be ferromagnetic, while Fe doped Bi$_{2}$Se$_{3}$ is likely to be antiferromagnetic. Finally, we estimate the magnetic coupling and the Curie temperature for the promising ferromagnetic insulator (Cr doped Bi$_{2}$Se$_{3}$) by Monte Carlo simulation. These findings may provide important guidance for the magnetism incorporation in TIs experimentally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا