Do you want to publish a course? Click here

Controlling local resistance via electric-field induced dislocations

50   0   0.0 ( 0 )
 Added by Donald M. Evans Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dislocations are one-dimensional (1D) topological line defects where the lattice deviates from the perfect crystal structure. The presence of dislocations transcends condensed matter research and gives rise to a diverse range of emergent phenomena [1-6], ranging from geological effects [7] to light emission from diodes [8]. Despite their ubiquity, to date, the controlled formation of dislocations is usually achieved via strain fields, applied either during growth [9,10] or retrospectively via deformation, e.g., (nano [11-14])-indentation [15]. Here we show how partial dislocations can be induced using local electric fields, altering the structure and electronic response of the material where the field is applied. By combining high-resolution imaging techniques and density functional theory calculations, we directly image these dislocations in the ferroelectric hexagonal manganite Er(Ti,Mn)O3 and study their impact on the local electric transport behaviour. The use of an electric field to induce partial dislocations is a conceptually new approach to the burgeoning field of emergent defect-driven phenomena and enables local property control without the need of external macroscopic strain fields. This control is an important step towards integrating and functionalising dislocations in practical devices for future oxide electronics.



rate research

Read More

115 - H. Kakizakai , F. Ando , T. Koyama 2016
Electric field effect on magnetism is an appealing technique for manipulating the magnetization at a low cost of energy. Here, we show that the local magnetization of the ultra-thin Co film can be switched by just applying a gate electric field without an assist of any external magnetic field or current flow. The local magnetization switching is explained by the nucleation and annihilation of the magnetic domain through the domain wall motion induced by the electric field. Our results lead to external field free and ultra-low energy spintronic applications.
Using first-principle calculations, we demonstrate several approaches to manipulate Dzyaloshinskii-Moriya Interaction (DMI) in ultrathin magnetic films. First, we find that DMI is significantly enhanced when the ferromagnetic (FM) layer is sandwiched between nonmagnetic (NM) layers inducing additive DMI in NM/FM/NM structures. For instance, as Pt and Ir below Co induce DMI of opposite chirality, inserting Co between Pt (below) and Ir (above) in Ir/Co/Pt trilayers enhances the DMI of Co/Pt bilayers by 15%. Furthermore, in case of Pb/Co/Pt trilayers (Ir/Fe/Co/Pt multilayers), DMI can be enhanced by 50% (almost doubled) compared to Co/Pt bilayers reaching a very large DMI amplitude of 2.7 (3.2) meV/atom. Our second approach for enhancing DMI is to use oxide capping layer. We show that DMI is enhanced by 60% in Oxide/Co/Pt structures compared to Co/Pt bilayers. Moreover, we unveiled the DMI mechanism at Oxide/Co inerface due to interfacial electric field effect, which is different to Fert-Levy DMI at FM/NM interfaces. Finally, we demonstrate that DMI amplitude can be modulated using an electric field with efficiency factor comparable to that of the electric field control of perpendicular magnetic anisotropy in transition metal/oxide interfaces. These approaches of DMI controlling pave the way for skyrmions and domain wall motion-based spintronic applications.
Neutron diffraction is used to probe the (H,T) phase diagram of magneto-electric (ME) LiNiPO4 for magnetic fields along the c-axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors (0,0,0), the other one is incommensurate (IC) with ordering vector (0,q,0). At low temperatures the C order collapses above 12 Tesla and adopts an IC structure with modulation vector parallel to (0,q,0). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction of the total magneto-elastic energy.
119 - M. Nardone , V. G. Karpov 2011
Electric field induced nucleation is introduced as a possible mechanism to realize a metallic phase of hydrogen. Analytical expressions are derived for the nucleation probabilities of both thermal and quantum nucleation in terms of material parameters, temperature, and the applied field. Our results show that the insulator-metal transition can be driven by an electric field within a reasonable temperature range and at much lower pressures than the current paradigm of P > 400 GPa. Both static and oscillating fields are considered and practical implementations are discussed.
The electric pulse-induced responses of 1T-TaS2 and 1T-TaS1.6Se0.4 crystals in the commensurate charge-density-wave (CCDW) phase in the hysteresis temperature range have been investigated. We observed that abrupt multiple steps of the resistance are excited by electric pulses at a fixed temperature forming multi metastable like states. We propose that the response of the system corresponds to the rearrangements of the textures of CCDW domains and the multi-resistance states or the nonvolatile resistance properties excited simply by electric pulses have profound significance for the exploration of solid-state devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا