Do you want to publish a course? Click here

Lee-Yang theory, high cumulants, and large-deviation statistics of the magnetization in the Ising model

102   0   0.0 ( 0 )
 Added by Christian Flindt
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the Ising model in one, two, and three dimensions using a cumulant method that allows us to determine the Lee-Yang zeros from the magnetization fluctuations in small lattices. By doing so with increasing system size, we are able to determine the convergence point of the Lee-Yang zeros in the thermodynamic limit and thereby predict the occurrence of a phase transition. The cumulant method is attractive from an experimental point of view since it uses fluctuations of measurable quantities, such as the magnetization in a spin lattice, and it can be applied to a variety of equilibrium and non-equilibrium problems. We show that the Lee-Yang zeros encode important information about the rare fluctuations of the magnetization. Specifically, by using a simple ansatz for the free energy, we express the large-deviation function of the magnetization in terms of Lee-Yang zeros. This result may hold for many systems that exhibit a first-order phase transition.



rate research

Read More

Phase transitions are typically accompanied by non-analytic behaviors of the free energy, which can be explained by considering the zeros of the partition function in the complex plane of the control parameter and their approach to the critical value on the real-axis as the system size is increased. Recent experiments have shown that partition function zeros are not just a theoretical concept. They can also be determined experimentally by measuring fluctuations of thermodynamic observables in systems of finite size. Motivated by this progress, we investigate here the partition function zeros for the Curie-Weiss model of spontaneous magnetization using our recently established cumulant method. Specifically, we extract the leading Fisher and Lee-Yang zeros of the Curie-Weiss model from the fluctuations of the energy and the magnetization in systems of finite size. We develop a finite-size scaling analysis of the partition function zeros, which is valid for mean-field models, and which allows us to extract both the critical values of the control parameters and the critical exponents, even for small systems that are away from criticality. We also show that the Lee-Yang zeros carry important information about the rare magnetic fluctuations as they allow us to predict many essential features of the large-deviation statistics of the magnetization. This finding may constitute a profound connection between Lee-Yang theory and large-deviation statistics.
We analyse dynamical large deviations of quantum trajectories in Markovian open quantum systems in their full generality. We derive a {em quantum level-2.5 large deviation principle} for these systems, which describes the joint fluctuations of time-averaged quantum jump rates and of the time-averaged quantum state for long times. Like its level-2.5 counterpart for classical continuous-time Markov chains (which it contains as a special case) this description is both {em explicit and complete}, as the statistics of arbitrary time-extensive dynamical observables can be obtained by contraction from the explicit level-2.5 rate functional we derive. Our approach uses an unravelled representation of the quantum dynamics which allows these statistics to be obtained by analysing a classical stochastic process in the space of pure states. For quantum reset processes we show that the unravelled dynamics is semi-Markov, and derive bounds on the asymptotic variance of the number of quantum jumps which generalise classical thermodynamic uncertainty relations. We finish by discussing how our level-2.5 approach can be used to study large deviations of non-linear functions of the state such as measures of entanglement.
The Ising model on annealed complex networks with degree distribution decaying algebraically as $p(K)sim K^{-lambda}$ has a second-order phase transition at finite temperature if $lambda> 3$. In the absence of space dimensionality, $lambda$ controls the transition strength; mean-field theory applies for $lambda >5$ but critical exponents are $lambda$-dependent if $lambda < 5$. Here we show that, as for regular lattices, the celebrated Lee-Yang circle theorem is obeyed for the former case. However, unlike on regular lattices where it is independent of dimensionality, the circle theorem fails on complex networks when $lambda < 5$. We discuss the importance of this result for both theory and experiments on phase transitions and critical phenomena. We also investigate the finite-size scaling of Lee-Yang zeros in both regimes as well as the multiplicative logarithmic corrections which occur at $lambda=5$.
The fluctuation-dissipation theorem is a central result in statistical mechanics and is usually formulated for systems described by diffusion processes. In this paper, we propose a generalization for a wider class of stochastic processes, namely the class of Markov processes that satisfy detailed balance and a large-deviation principle. The generalized fluctuation-dissipation theorem characterizes the deterministic limit of such a Markov process as a generalized gradient flow, a mathematical tool to model a purely irreversible dynamics via a dissipation potential and an entropy function: these are expressed in terms of the large-deviation dynamic rate function of the Markov process and its stationary distribution. We exploit the generalized fluctuation-dissipation theorem to develop a new method of coarse-graining and test it in the context of the passage from the diffusion in a double-well potential to the jump process that describes the simple reaction $A rightleftarrows B$ (Kramers escape problem).
70 - Stefano Gherardini 2019
The exact statistics of an arbitrary quantum observable is analytically obtained. Due to the probabilistic nature of a sequence of intermediate measurements and stochastic fluctuations induced by the interaction with the environment, the measurement outcomes at the end of the systems evolution are random variables. Here, we provide the exact large-deviation form of their probability distribution, which is given by an exponentially decaying profile in the number of measurements. The most probable distribution of the measurement outcomes in a single realization of the system transformation is then derived, thus achieving predictions beyond the expectation value. The theoretical results are confirmed by numerical simulations of an experimentally reproducible two-level system with stochastic Hamiltonian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا