No Arabic abstract
We analyse dynamical large deviations of quantum trajectories in Markovian open quantum systems in their full generality. We derive a {em quantum level-2.5 large deviation principle} for these systems, which describes the joint fluctuations of time-averaged quantum jump rates and of the time-averaged quantum state for long times. Like its level-2.5 counterpart for classical continuous-time Markov chains (which it contains as a special case) this description is both {em explicit and complete}, as the statistics of arbitrary time-extensive dynamical observables can be obtained by contraction from the explicit level-2.5 rate functional we derive. Our approach uses an unravelled representation of the quantum dynamics which allows these statistics to be obtained by analysing a classical stochastic process in the space of pure states. For quantum reset processes we show that the unravelled dynamics is semi-Markov, and derive bounds on the asymptotic variance of the number of quantum jumps which generalise classical thermodynamic uncertainty relations. We finish by discussing how our level-2.5 approach can be used to study large deviations of non-linear functions of the state such as measures of entanglement.
The exact statistics of an arbitrary quantum observable is analytically obtained. Due to the probabilistic nature of a sequence of intermediate measurements and stochastic fluctuations induced by the interaction with the environment, the measurement outcomes at the end of the systems evolution are random variables. Here, we provide the exact large-deviation form of their probability distribution, which is given by an exponentially decaying profile in the number of measurements. The most probable distribution of the measurement outcomes in a single realization of the system transformation is then derived, thus achieving predictions beyond the expectation value. The theoretical results are confirmed by numerical simulations of an experimentally reproducible two-level system with stochastic Hamiltonian.
In this work we investigate the late-time stationary states of open quantum systems coupled to a thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution if the coupling to the thermal reservoir is non-vanishing or equivalently if the relaxation timescales are finite. Using a variety of non-equilibrium formalisms valid for non-Markovian processes, we show that starting from a product state of the closed system = system + environment, with the environment in its thermal state, the open system which results from coarse graining the environment will evolve towards an equilibrium state at late-times. This state can be expressed as the reduced state of the closed system thermal state at the temperature of the environment. For a linear (harmonic) system and environment, which is exactly solvable, we are able to show in a rigorous way that all multi-time correlations of the open system evolve towards those of the closed system thermal state. Multi-time correlations are especially relevant in the non-Markovian regime, since they cannot be generated by the dynamics of the single-time correlations. For more general systems, which cannot be exactly solved, we are able to provide a general proof that all single-time correlations of the open system evolve to those of the closed system thermal state, to first order in the relaxation rates. For the special case of a zero-temperature reservoir, we are able to explicitly construct the reduced closed system thermal state in terms of the environmental correlations.
The theory of large deviations has been applied successfully in the last 30 years or so to study the properties of equilibrium systems and to put the foundations of equilibrium statistical mechanics on a clearer and more rigorous footing. A similar approach has been followed more recently for nonequilibrium systems, especially in the context of interacting particle systems. We review here the basis of this approach, emphasizing the similarities and differences that exist between the application of large deviation theory for studying equilibrium systems on the one hand and nonequilibrium systems on the other. Of particular importance are the notions of macroscopic, hydrodynamic, and long-time limits, which are analogues of the equilibrium thermodynamic limit, and the notion of statistical ensembles which can be generalized to nonequilibrium systems. For the purpose of illustrating our discussion, we focus on applications to Markov processes, in particular to simple random walks.
The theory of large deviations constitutes a mathematical cornerstone in the foundations of Boltzmann-Gibbs statistical mechanics, based on the additive entropy $S_{BG}=- k_Bsum_{i=1}^W p_i ln p_i$. Its optimization under appropriate constraints yields the celebrated BG weight $e^{-beta E_i}$. An elementary large-deviation connection is provided by $N$ independent binary variables, which, in the $Ntoinfty$ limit yields a Gaussian distribution. The probability of having $n e N/2$ out of $N$ throws is governed by the exponential decay $e^{-N r}$, where the rate function $r$ is directly related to the relative BG entropy. To deal with a wide class of complex systems, nonextensive statistical mechanics has been proposed, based on the nonadditive entropy $S_q=k_Bfrac{1- sum_{i=1}^W p_i^q}{q-1}$ ($q in {cal R}; ,S_1=S_{BG}$). Its optimization yields the generalized weight $e_q^{-beta_q E_i}$ ($e_q^z equiv [1+(1-q)z]^{1/(1-q)};,e_1^z=e^z)$. We numerically study large deviations for a strongly correlated model which depends on the indices $Q in [1,2)$ and $gamma in (0,1)$. This model provides, in the $Ntoinfty$ limit ($forall gamma$), $Q$-Gaussian distributions, ubiquitously observed in nature ($Qto 1$ recovers the independent binary model). We show that its corresponding large deviations are governed by $e_q^{-N r_q}$ ($propto 1/N^{1/(q-1)}$ if $q>1$) where $q= frac{Q-1}{gamma (3-Q)}+1 ge 1$. This $q$-generalized illustration opens wide the door towards a desirable large-deviation foundation of nonextensive statistical mechanics.
We propose a generalization of the linked-cluster expansions to study driven-dissipative quantum lattice models, directly accessing the thermodynamic limit of the system. Our method leads to the evaluation of the desired extensive property onto small connected clusters of a given size and topology. We first test this approach on the isotropic spin-1/2 Hamiltonian in two dimensions, where each spin is coupled to an independent environment that induces incoherent spin flips. Then we apply it to the study of an anisotropic model displaying a dissipative phase transition from a magnetically ordered to a disordered phase. By means of a Pade analysis on the series expansions for the average magnetization, we provide a viable route to locate the phase transition and to extrapolate the critical exponent for the magnetic susceptibility.