Do you want to publish a course? Click here

Streaming Transformer ASR with Blockwise Synchronous Beam Search

86   0   0.0 ( 0 )
 Added by Emiru Tsunoo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The Transformer self-attention network has shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire input sequence is required to compute both self-attention and source--target attention. In this paper, we propose a novel blockwise synchronous beam search algorithm based on blockwise processing of encoder to perform streaming E2E Transformer ASR. In the beam search, encoded feature blocks are synchronously aligned using a block boundary detection technique, where a reliability score of each predicted hypothesis is evaluated based on the end-of-sequence and repeated tokens in the hypothesis. Evaluations of the HKUST and AISHELL-1 Mandarin, LibriSpeech English, and CSJ Japanese tasks show that the proposed streaming Transformer algorithm outperforms conventional online approaches, including monotonic chunkwise attention (MoChA), especially when using the knowledge distillation technique. An ablation study indicates that our streaming approach contributes to reducing the response time, and the repetition criterion contributes significantly in certain tasks. Our streaming ASR models achieve comparable or superior performance to batch models and other streaming-based Transformer methods in all tasks considered.



rate research

Read More

Recently self-supervised learning has emerged as an effective approach to improve the performance of automatic speech recognition (ASR). Under such a framework, the neural network is usually pre-trained with massive unlabeled data and then fine-tuned with limited labeled data. However, the non-streaming architecture like bidirectional transformer is usually adopted by the neural network to achieve competitive results, which can not be used in streaming scenarios. In this paper, we mainly focus on improving the performance of streaming transformer under the self-supervised learning framework. Specifically, we propose a novel two-stage training method during fine-tuning, which combines knowledge distilling and self-training. The proposed training method achieves 16.3% relative word error rate (WER) reduction on Librispeech noisy test set. Finally, by only using the 100h clean subset of Librispeech as the labeled data and the rest (860h) as the unlabeled data, our streaming transformer based model obtains competitive WERs 3.5/8.7 on Librispeech clean/noisy test sets.
Non-autoregressive (NAR) modeling has gained more and more attention in speech processing. With recent state-of-the-art attention-based automatic speech recognition (ASR) structure, NAR can realize promising real-time factor (RTF) improvement with only small degradation of accuracy compared to the autoregressive (AR) models. However, the recognition inference needs to wait for the completion of a full speech utterance, which limits their applications on low latency scenarios. To address this issue, we propose a novel end-to-end streaming NAR speech recognition system by combining blockwise-attention and connectionist temporal classification with mask-predict (Mask-CTC) NAR. During inference, the input audio is separated into small blocks and then processed in a blockwise streaming way. To address the insertion and deletion error at the edge of the output of each block, we apply an overlapping decoding strategy with a dynamic mapping trick that can produce more coherent sentences. Experimental results show that the proposed method improves online ASR recognition in low latency conditions compared to vanilla Mask-CTC. Moreover, it can achieve a much faster inference speed compared to the AR attention-based models. All of our codes will be publicly available at https://github.com/espnet/espnet.
400 - Bo Li , Anmol Gulati , Jiahui Yu 2020
End-to-end (E2E) models have shown to outperform state-of-the-art conventional models for streaming speech recognition [1] across many dimensions, including quality (as measured by word error rate (WER)) and endpointer latency [2]. However, the model still tends to delay the predictions towards the end and thus has much higher partial latency compared to a conventional ASR model. To address this issue, we look at encouraging the E2E model to emit words early, through an algorithm called FastEmit [3]. Naturally, improving on latency results in a quality degradation. To address this, we explore replacing the LSTM layers in the encoder of our E2E model with Conformer layers [4], which has shown good improvements for ASR. Secondly, we also explore running a 2nd-pass beam search to improve quality. In order to ensure the 2nd-pass completes quickly, we explore non-causal Conformer layers that feed into the same 1st-pass RNN-T decoder, an algorithm called Cascaded Encoders [5]. Overall, we find that the Conformer RNN-T with Cascaded Encoders offers a better quality and latency tradeoff for streaming ASR.
In this work, to measure the accuracy and efficiency for a latency-controlled streaming automatic speech recognition (ASR) application, we perform comprehensive evaluations on three popular training criteria: LF-MMI, CTC and RNN-T. In transcribing social media videos of 7 languages with training data 3K-14K hours, we conduct large-scale controlled experimentation across each criterion using identical datasets and encoder model architecture. We find that RNN-T has consistent wins in ASR accuracy, while CTC models excel at inference efficiency. Moreover, we selectively examine various modeling strategies for different training criteria, including modeling units, encoder architectures, pre-training, etc. Given such large-scale real-world streaming ASR application, to our best knowledge, we present the first comprehensive benchmark on these three widely used training criteria across a great many languages.
The Transformer self-attention network has recently shown promising performance as an alternative to recurrent neural networks (RNNs) in end-to-end (E2E) automatic speech recognition (ASR) systems. However, the Transformer has a drawback in that the entire input sequence is required to compute self-attention. In this paper, we propose a new block processing method for the Transformer encoder by introducing a context-aware inheritance mechanism. An additional context embedding vector handed over from the previously processed block helps to encode not only local acoustic information but also global linguistic, channel, and speaker attributes. We introduce a novel mask technique to implement the context inheritance to train the model efficiently. Evaluations of the Wall Street Journal (WSJ), Librispeech, VoxForge Italian, and AISHELL-1 Mandarin speech recognition datasets show that our proposed contextual block processing method outperforms naive block processing consistently. Furthermore, the attention weight tendency of each layer is analyzed to clarify how the added contextual inheritance mechanism models the global information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا