No Arabic abstract
We address the problem of layout generation for diverse domains such as images, documents, and mobile applications. A layout is a set of graphical elements, belonging to one or more categories, placed together in a meaningful way. Generating a new layout or extending an existing layout requires understanding the relationships between these graphical elements. To do this, we propose a novel framework, LayoutTransformer, that leverages a self-attention based approach to learn contextual relationships between layout elements and generate layouts in a given domain. The proposed model improves upon the state-of-the-art approaches in layout generation in four ways. First, our model can generate a new layout either from an empty set or add more elements to a partial layout starting from an initial set of elements. Second, as the approach is attention-based, we can visualize which previous elements the model is attending to predict the next element, thereby providing an interpretable sequence of layout elements. Third, our model can easily scale to support both a large number of element categories and a large number of elements per layout. Finally, the model also produces an embedding for various element categories, which can be used to explore the relationships between the categories. We demonstrate with experiments that our model can produce meaningful layouts in diverse settings such as object bounding boxes in scenes (COCO bounding boxes), documents (PubLayNet), and mobile applications (RICO dataset).
Generative models able to synthesize layouts of different kinds (e.g. documents, user interfaces or furniture arrangements) are a useful tool to aid design processes and as a first step in the generation of synthetic data, among other tasks. We exploit the properties of self-attention layers to capture high level relationships between elements in a layout, and use these as the building blocks of the well-known Variational Autoencoder (VAE) formulation. Our proposed Variational Transformer Network (VTN) is capable of learning margins, alignments and other global design rules without explicit supervision. Layouts sampled from our model have a high degree of resemblance to the training data, while demonstrating appealing diversity. In an extensive evaluation on publicly available benchmarks for different layout types VTNs achieve state-of-the-art diversity and perceptual quality. Additionally, we show the capabilities of this method as part of a document layout detection pipeline.
We tackle the problem of semantic image layout manipulation, which aims to manipulate an input image by editing its semantic label map. A core problem of this task is how to transfer visual details from the input images to the new semantic layout while making the resulting image visually realistic. Recent work on learning cross-domain correspondence has shown promising results for global layout transfer with dense attention-based warping. However, this method tends to lose texture details due to the resolution limitation and the lack of smoothness constraint of correspondence. To adapt this paradigm for the layout manipulation task, we propose a high-resolution sparse attention module that effectively transfers visual details to new layouts at a resolution up to 512x512. To further improve visual quality, we introduce a novel generator architecture consisting of a semantic encoder and a two-stage decoder for coarse-to-fine synthesis. Experiments on the ADE20k and Places365 datasets demonstrate that our proposed approach achieves substantial improvements over the existing inpainting and layout manipulation methods.
Despite significant recent progress on generative models, controlled generation of images depicting multiple and complex object layouts is still a difficult problem. Among the core challenges are the diversity of appearance a given object may possess and, as a result, exponential set of images consistent with a specified layout. To address these challenges, we propose a novel approach for layout-based image generation; we call it Layout2Im. Given the coarse spatial layout (bounding boxes + object categories), our model can generate a set of realistic images which have the correct objects in the desired locations. The representation of each object is disentangled into a specified/certain part (category) and an unspecified/uncertain part (appearance). The category is encoded using a word embedding and the appearance is distilled into a low-dimensional vector sampled from a normal distribution. Individual object representations are composed together using convolutional LSTM, to obtain an encoding of the complete layout, and then decoded to an image. Several loss terms are introduced to encourage accurate and diverse generation. The proposed Layout2Im model significantly outperforms the previous state of the art, boosting the best reported inception score by 24.66% and 28.57% on the very challenging COCO-Stuff and Visual Genome datasets, respectively. Extensive experiments also demonstrate our methods ability to generate complex and diverse images with multiple objects.
Graphic design is essential for visual communication with layouts being fundamental to composing attractive designs. Layout generation differs from pixel-level image synthesis and is unique in terms of the requirement of mutual relations among the desired components. We propose a method for design layout generation that can satisfy user-specified constraints. The proposed neural design network (NDN) consists of three modules. The first module predicts a graph with complete relations from a graph with user-specified relations. The second module generates a layout from the predicted graph. Finally, the third module fine-tunes the predicted layout. Quantitative and qualitative experiments demonstrate that the generated layouts are visually similar to real design layouts. We also construct real designs based on predicted layouts for a better understanding of the visual quality. Finally, we demonstrate a practical application on layout recommendation.
In this paper, we explore the task of generating photo-realistic face images from lines. Previous methods based on conditional generative adversarial networks (cGANs) have shown their power to generate visually plausible images when a conditional image and an output image share well-aligned structures. However, these models fail to synthesize face images with a whole set of well-defined structures, e.g. eyes, noses, mouths, etc., especially when the conditional line map lacks one or several parts. To address this problem, we propose a conditional self-attention generative adversarial network (CSAGAN). We introduce a conditional self-attention mechanism to cGANs to capture long-range dependencies between different regions in faces. We also build a multi-scale discriminator. The large-scale discriminator enforces the completeness of global structures and the small-scale discriminator encourages fine details, thereby enhancing the realism of generated face images. We evaluate the proposed model on the CelebA-HD dataset by two perceptual user studies and three quantitative metrics. The experiment results demonstrate that our method generates high-quality facial images while preserving facial structures. Our results outperform state-of-the-art methods both quantitatively and qualitatively.