Do you want to publish a course? Click here

Coherent and Purcell-enhanced emission from erbium dopants in a cryogenic high-Q resonator

61   0   0.0 ( 0 )
 Added by Andreas Reiserer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The stability and outstanding coherence of dopants and other atom-like defects in tailored host crystals make them a leading platform for the implementation of distributed quantum information processing and sensing in quantum networks. Albeit the required efficient light-matter coupling can be achieved via the integration into nanoscale resonators, in this approach the proximity of interfaces is detrimental to the coherence of even the least-sensitive emitters. Here, we establish an alternative: By integrating a 19 micrometer thin erbium-doped crystal into a cryogenic Fabry-Perot resonator with a quality factor of nine million, we can demonstrate 59(6)-fold enhancement of the emission rate, corresponding to a two-level Purcell factor of 530(50), while preserving lifetime-limited optical coherence up to 0.54(1) ms. With its emission at the minimal-loss wavelength of optical fibers and its outcoupling efficiency of 46(8) %, our system enables coherent and efficient nodes for long-distance quantum networks.



rate research

Read More

The interaction of single quantum emitters with an optical cavity enables the realization of efficient spin-photon interfaces, an essential resource for quantum networks. The dynamical control of the spontaneous emission rate of quantum emitters in cavities has important implications in quantum technologies, e.g. for shaping the emitted photons waveform, for generating quantum entanglement, or for driving coherently the optical transition while preventing photon emission. Here we demonstrate the dynamical control of the Purcell enhanced emission of a small ensemble of erbium ions doped into nanoparticles. By embedding the doped nanoparticles into a fully tunable high finesse fiber based optical microcavity, we show that we can tune the cavity on- and out of-resonance by controlling its length with sub-nanometer precision, on a time scale more than two orders of magnitude faster than the natural lifetime of the erbium ions. This allows us to shape in real time the Purcell enhanced emission of the ions and to achieve full control over the emitted photons waveforms. This capability opens prospects for the realization of efficient nanoscale quantum interfaces between solid-state spins and single telecom photons with controllable waveform, and for the realization of quantum gates between rare-earth ion qubits coupled to an optical cavity.
Optical microcavities are a powerful tool to enhance spontaneous emission of individual quantum emitters. However, the broad emission spectra encountered in the solid state at room temperature limit the influence of a cavity, and call for ultra-small mode volume. We demonstrate Purcell-enhanced single photon emission from nitrogen-vacancy (NV) centers in nanodiamonds coupled to a tunable fiber-based microcavity with a mode volume down to $1.0,lambda^{3}$. We record cavity-enhanced fluorescence images and study several single emitters with one cavity. The Purcell effect is evidenced by enhanced fluorescence collection, as well as tunable fluorescence lifetime modification, and we infer an effective Purcell factor of up to 2.0. With numerical simulations, we furthermore show that a novel regime for light confinement can be achieved, where a Fabry-Perot mode is combined with additional mode confinement by the nanocrystal itself. In this regime, effective Purcell factors of up to 11 for NV centers and 63 for silicon vacancy centers are feasible, holding promise for bright single photon sources and efficient spin readout under ambient conditions.
Ensembles of erbium dopants can realize quantum memories and frequency converters that operate in the minimal-loss wavelength band of fiber optical communication. Their operation requires the initialization, coherent control and readout of the electronic spin state. In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state. The presented techniques can also be applied to other combinations of dopant and host, and may facilitate the development of new quantum memory protocols and sensing schemes.
We demonstrate cavity-enhanced Raman emission from a single atomic defect in a solid. Our platform is a single silicon-vacancy center in diamond coupled with a monolithic diamond photonic crystal cavity. The cavity enables an unprecedented frequency tuning range of the Raman emission (100 GHz) that significantly exceeds the spectral inhomogeneity of silicon-vacancy centers in diamond nanostructures. We also show that the cavity selectively suppresses the phonon-induced spontaneous emission that degrades the efficiency of Raman photon generation. Our results pave the way towards photon-mediated many-body interactions between solid-state quantum emitters in a nanophotonic platform.
Encoding information onto optical fields is the backbone of modern telecommunication networks. Optical fibers offer low loss transport and vast bandwidth compared to electrical cables, and are currently also replacing coaxial cables for short-range communications. Optical fibers also exhibit significantly lower thermal conductivity, making optical interconnects attractive for interfacing with superconducting circuits and devices. Yet little is known about modulation at cryogenic temperatures. Here we demonstrate a proof-of-principle experiment, showing that currently employed Ti-doped LiNbO modulators maintain the Pockels coefficient at 3K---a base temperature for classical microwave amplifier circuitry. We realize electro-optical read-out of a superconducting electromechanical circuit to perform both coherent spectroscopy, measuring optomechanically-induced transparency, and incoherent thermometry, encoding the thermomechanical sidebands in an optical signal. Although the achieved noise figures are high, approaches that match the lower-bandwidth microwave signals, use integrated devices or materials with higher EO coefficient, should achieve added noise similar to current HEMT amplifiers, providing a route to parallel readout for emerging quantum or classical computing platforms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا