No Arabic abstract
In this paper, we derive the universal (cut-off-independent) part of the holographic entanglement entropy in the noncommutative Yang-Mills theory and examine its properties in detail. The behavior of the holographic entanglement entropy as a function of a scale of the system changes drastically between large noncommutativity and small noncommutativity. The strong subadditivity inequality for the entanglement entropies in the noncommutative Yang-Mills theory is modified in large noncommutativity. The behavior of entropic $c$-function defined by means of the entanglement entropy also changes drastically between large noncommutativity and small noncommutativity. In addition, there is a transition for the entanglement entropy in the noncommutative Yang-Mills theory at finite temperature.
In this paper, we probe the effect of noncommutativity on the entanglement of purification in the holographic set up. We followed a systematic analytical approach in order to compute the holographic entanglement entropy corresponding to a strip like subsystem. The entropic c-function has been computed and the effect of noncommutativity has been noted. We then move on to compute the minimal cross-section area of the entanglement wedge by considering two disjoint subsystems. On the basis of $E_P = E_W$ duality, this leads to the holographic computation of the entanglement of purification. The correlation between two subsystems, namely, the holographic mutual information has also been computed. Finally we consider a black hole geometry with a noncommutative parameter and study the influence of both noncommutativity and finite temperature on the entanglement of purification and mutual information.
We present a lattice formulation of noncommutative Yang-Mills theory in arbitrary even dimensionality. The UV/IR mixing characteristic of noncommutative field theories is demonstrated at a completely nonperturbative level. We prove a discrete Morita equivalence between ordinary Yang-Mills theory with multi-valued gauge fields and noncommutative Yang-Mills theory with periodic gauge fields. Using this equivalence, we show that generic noncommutative gauge theories in the continuum can be regularized nonperturbatively by means of {it ordinary} lattice gauge theory with t~Hooft flux. In the case of irrational noncommutativity parameters, the rank of the gauge group of the commutative lattice theory must be sent to infinity in the continuum limit. As a special case, the construction includes the recent description of noncommutative Yang-Mills theories using twisted large $N$ reduced models. We study the coupling of noncommutative gauge fields to matter fields in the fundamental representation of the gauge group using the lattice formalism. The large mass expansion is used to describe the physical meaning of Wilson loops in noncommutative gauge theories. We also demonstrate Morita equivalence in the presence of fundamental matter fields and use this property to comment on the calculation of the beta-function in noncommutative quantum electrodynamics.
We show that twisted reduced models can be interpreted as noncommutative Yang-Mills theory. Based upon this correspondence, we obtain noncommutative Yang-Mills theory with D-brane backgrounds in IIB matrix model. We propose that IIB matrix model with D-brane backgrounds serve as a concrete definition of noncommutative Yang-Mills. We investigate D-instanton solutions as local excitations on D3-branes. When instantons overlap, their interaction can be well described in gauge theory and AdS/CFT correspondence. We show that IIB matrix model gives us the consistent potential with IIB supergravity when they are well separated.
In this paper, we will propose a universal relation between the holographic complexity (dual to a volume in AdS) and the holographic entanglement entropy (dual to an area in AdS). We will explicitly demonstrate that our conjuncture hold for all a metric asymptotic to AdS$_3$, and then argue that such a relation should hold in general due to the AdS version of the Cavalieri principle. We will demonstrate that it holds for Janus solution, which have been recently been obtained in type IIB string theory. We will also show that this conjecture holds for a circular disk. This conjecture will be used to show that the proposal that the complexity equals action, and the proposal that the complexity equal volume can represent the same physics. Thus, using this conjecture, we will show that the black holes are fastest computers, using the proposal that complexity equals volume.
We investigate the effect of supersymmetry preserving mass deformation near the UV fixed point represented by the ${cal N}=6$ ABJM theory. In the context of the gauge/gravity duality, we analytically calculate the leading small mass effect on the renormalized entanglement entropy (REE) for the most general Lin-Lunin-Maldacena (LLM) geometries in the cases of the strip and disk shaped entangling surfaces. Our result shows that the properties of the REE in (2+1)-dimensions are consistent with those of the $c$-function in (1+1)-dimensions. We also discuss the validity of our computations in terms of the curvature behavior of the LLM geometry in the large $N$ limit and the relation between the correlation length and the mass parameter for a special LLM solution.