Do you want to publish a course? Click here

The DIANOGA simulations of galaxy clusters: characterizing star formation in proto-clusters

422   0   0.0 ( 0 )
 Added by Luigi Bassini
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied the star formation rate (SFR) in cosmological hydrodynamical simulations of galaxy (proto-)clusters in the redshift range $0<z<4$, comparing them to recent observational studies; we also investigated the effect of varying the parameters of the star formation model on galaxy properties such as SFR, star-formation efficiency, and gas fraction. We analyze a set of zoom-in cosmological hydrodynamical simulations centred on twelve clusters. The simulations are carried out with the GADGET-3 TreePM/SPH code which includes various subgrid models to treat unresolved baryonic physics, including AGN feedback. Simulations do not reproduce the high values of SFR observed within protoclusters cores, where the values of SFR are underpredicted by a factor $gtrsim 4$ both at $zsim2$ and $zsim 4$. The difference arises as simulations are unable to reproduce the observed starburst population and is worsened at $zsim 2$ because simulations underpredict the normalization of the main sequence of star forming galaxies (i.e., the correlation between stellar mass and SFR) by a factor of $sim 3$. As the low normalization of the main sequence seems to be driven by an underestimated gas fraction, it remains unclear whether numerical simulations miss starburst galaxies due to a too low predicted gas fractions or too low star formation efficiencies. Our results are stable against varying several parameters of the star formation subgrid model and do not depend on the details of the AGN feedback.

rate research

Read More

We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M_r < -19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 +/- 0.003) is higher than that in all relaxed clusters (0.097 +/- 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.
Cosmological shock waves are ubiquitous to cosmic structure formation and evolution. As a consequence, they play a major role in the energy distribution and thermalization of the intergalactic medium (IGM). We analyze the Mach number distribution in the Dianoga simulations of galaxy clusters performed with the SPH code GADGET-3. The simulations include the effects of radiative cooling, star formation, metal enrichment, supernova and active galactic nuclei feedback. A grid-based shock-finding algorithm is applied in post-processing to the outputs of the simulations. This procedure allows us to explore in detail the distribution of shocked cells and their strengths as a function of cluster mass, redshift and baryonic physics. We also pay special attention to the connection between shock waves and the cool-core/non-cool core (CC/NCC) state and the global dynamical status of the simulated clusters. In terms of general shock statistics, we obtain a broad agreement with previous works, with weak (low-Mach number) shocks filling most of the volume and processing most of the total thermal energy flux. As a function of cluster mass, we find that massive clusters seem more efficient in thermalising the IGM and tend to show larger external accretion shocks than less massive systems. We do not find any relevant difference between CC and NCC clusters. However, we find a mild dependence of the radial distribution of the shock Mach number on the cluster dynamical state, with disturbed systems showing stronger shocks than regular ones throughout the cluster volume.
We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.
We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at $1 < z < 1.5$ from the Spitzer/IRAC Shallow Cluster Survey (ISCS). We present new spectroscopic confirmation for six of these high-redshift clusters, five of which are at $z>1.35$. Using infrared luminosities measured with deep Spitzer/MIPS observations at 24 $mu$m, along with robust optical+IRAC photometric redshifts and SED-fitted stellar masses, we present the dust-obscured star-forming fractions, star formation rates and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that $zsim 1.4$ represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at $z>1.4$ environment-dependent quenching had not yet been established in ISCS clusters. Combining these observations with complementary studies showing a rapid increase in the AGN fraction, a stochastic star formation history, and a major merging episode at the same epoch in this cluster sample, we suggest that the starburst activity is likely merger-driven and that the subsequent quenching is due to feedback from merger-fueled AGN. The totality of the evidence suggests we are witnessing the final quenching period that brings an end to the era of star formation in galaxy clusters and initiates the era of passive evolution.
We observed star-forming galaxies at z~1.5 selected from the HyperSuprimeCam Subaru Strategic Program. The galaxies are part of two significant overdensities of [OII] emitters identified via narrow-band imaging and photometric redshifts from grizy photometry. We used VLT/KMOS to carry out Halpha integral field spectroscopy of 46 galaxies in total. Ionized gas maps, star formation rates and velocity fields were derived from the Halpha emission line. We quantified morphological and kinematical asymmetries to test for potential gravitational (e.g. galaxy-galaxy) or hydrodynamical (e.g. ram-pressure) interactions. Halpha emission was detected in 36 targets. 34 of the galaxies are members of two (proto-)clusters at z=1.47, confirming our selection strategy to be highly efficient. By fitting model velocity fields to the observed ones, we determined the intrinsic maximum rotation velocity Vmax of 14 galaxies. Utilizing the luminosity-velocity (Tully-Fisher) relation, we find that these galaxies are more luminous than their local counterparts of similar mass by up to ~4 mag in the rest-frame B-band. In contrast to field galaxies at z<1, the offsets of the z~1.5 (proto-)cluster galaxies from the local Tully-Fisher relation are not correlated with their star formation rates but with the ratio between Vmax and gas velocity dispersion sigma_g. This probably reflects that, as is observed in the field at similar redshifts, fewer disks have settled to purely rotational kinematics and high Vmax/sigma_g ratios. Due to relatively low galaxy velocity dispersions (sigma_v < 400 km/s) of the (proto-)clusters, gravitational interactions likely are more efficient, resulting in higher kinematical asymmetries, than in present-day clusters. (abbr.)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا