Do you want to publish a course? Click here

Star Formation and Substructure in Galaxy Clusters

197   0   0.0 ( 0 )
 Added by Seth Cohen
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.



rate research

Read More

We use the Copernicus Complexio (COCO) high resolution $N$-body simulations to investigate differences in the properties of small-scale structures in the standard cold dark matter (CDM) model and in a model with a cutoff in the initial power spectrum of density fluctuations consistent with both a thermally produced warm dark matter (WDM) particle or a sterile neutrino with mass 7 keV and leptogenesis parameter $L_6=8.7$. The latter corresponds to the coldest model with this sterile neutrino mass compatible with the identification of the recently detected 3.5 keV X-ray line as resulting from particle decay. CDM and WDM predict very different number densities of subhaloes with mass $leq 10^9,h^{-1},M_odot$ although they predict similar, nearly universal, normalised subhalo radial density distributions. Haloes and subhaloes in both models have cuspy NFW profiles, but WDM subhaloes below the cutoff scale in the power spectrum (corresponding to maximum circular velocities $V_{mathrm{max}}^{z=0} leq50~mathrm{kms}^{-1}$) are less concentrated than their CDM counterparts. We make predictions for observable properties using the GALFORM semi-analytic model of galaxy formation. Both models predict Milky Way satellite luminosity functions consistent with observations, although the WDM model predicts fewer very faint satellites. This model, however, predicts slightly more UV bright galaxies at redshift $z>7$ than CDM, but both are consistent with observations. Gravitational lensing offers the best prospect of distinguishing between the models.
174 - Frederic Bournaud 2011
This lecture reviews the fundamental physical processes involved in star formation in galaxy interactions and mergers. Interactions and mergers often drive intense starbursts, but the link between interstellar gas physics, large scale interactions, and active star formation is complex and not fully understood yet. Two processes can drive starbursts: radial inflows of gas can fuel nuclear starbursts, triggered gas turbulence and fragmentation can drive more extended starbursts in massive star clusters with high fractions of dense gas. Both modes are certainly required to account for the observed properties of starbursting mergers. A particular consequence is that star formation scaling laws are not universal, but vary from quiescent disks to starbursting mergers. High-resolution hydrodynamic simulations are used to illustrate the lectures.
We used optical imaging and spectroscopic data to derive substructure estimates for local Universe ($z < 0.11$) galaxy clusters from two different samples. The first was selected through the Sunyaev-Zeldovich (SZ) effect by the Planck satellite and the second is an X-ray selected sample. In agreement to X-ray substructure estimates we found that the SZ systems have a larger fraction of substructure than the X-ray clusters. We have also found evidence that the higher mass regime of the SZ clusters, compared to the X-ray sample, explains the larger fraction of disturbed objects in the Planck data. Although we detect a redshift evolution in the substructure fraction, it is not sufficient to explain the different results between the higher-z SZ sample and the X-ray one. We have also verified a good agreement ($sim$60$%$) between the optical and X-ray substructure estimates. However, the best level of agreement is given by the substructure classification given by measures based on the brightest cluster galaxy (BCG), either the BCG$-$X-ray centroid offset, or the magnitude gap between the first and second BCGs. We advocate the use of those two parameters as the most reliable and cheap way to assess cluster dynamical state. We recommend an offset cut of $sim$0.01$times$R$_{500}$ to separate relaxed and disturbed clusters. Regarding the magnitude gap the separation can be done at $Delta m_{12} = 1.0$. The central galaxy paradigm (CGP) may not be valid for $sim$20$%$ of relaxed massive clusters. This fraction increases to $sim$60$%$ for disturbed systems.
We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at $1 < z < 1.5$ from the Spitzer/IRAC Shallow Cluster Survey (ISCS). We present new spectroscopic confirmation for six of these high-redshift clusters, five of which are at $z>1.35$. Using infrared luminosities measured with deep Spitzer/MIPS observations at 24 $mu$m, along with robust optical+IRAC photometric redshifts and SED-fitted stellar masses, we present the dust-obscured star-forming fractions, star formation rates and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that $zsim 1.4$ represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at $z>1.4$ environment-dependent quenching had not yet been established in ISCS clusters. Combining these observations with complementary studies showing a rapid increase in the AGN fraction, a stochastic star formation history, and a major merging episode at the same epoch in this cluster sample, we suggest that the starburst activity is likely merger-driven and that the subsequent quenching is due to feedback from merger-fueled AGN. The totality of the evidence suggests we are witnessing the final quenching period that brings an end to the era of star formation in galaxy clusters and initiates the era of passive evolution.
292 - M. Kuhlen , M. Krumholz , P. Madau 2011
We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low mass halos (M_h < ~10^10 M_sun) at z>4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with supernova feedback. We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z=4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized 1D radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic--molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Sigma_gas cutoff due to the transition from atomic to molecular phase and the metallicity dependence thereof, without the use of an explicit density threshold in our star formation prescription. We compare the evolution of the luminosity function, stellar mass density, and star formation rate density from our simulations to recent observational determinations of the same at z=4-8 and find reasonable agreement between the two.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا