No Arabic abstract
We present a systematic study of quantum system compression for the evolution of generic many-body problems. The necessary numerical simulations of such systems are seriously hindered by the exponential growth of the Hilbert space dimension with the number of particles. For a emph{constant} Hamiltonian system of Hilbert space dimension $n$ whose frequencies range from $f_{min}$ to $f_{max}$, we show via a proper orthogonal decomposition, that for a run-time $T$, the dominant dynamics are compressed in the neighborhood of a subspace whose dimension is the smallest integer larger than the time-bandwidth product $delf=(f_{max}-f_{min})T$. We also show how the distribution of initial states can further compress the system dimension. Under the stated conditions, the time-bandwidth estimate reveals the emph{existence} of an effective compressed model whose dimension is derived solely from system properties and not dependent on the particular implementation of a variational simulator, such as a machine learning system, or quantum device. However, finding an efficient solution procedure emph{is} dependent on the simulator implementation{color{black}, which is not discussed in this paper}. In addition, we show that the compression rendered by the proper orthogonal decomposition encoding method can be further strengthened via a multi-layer autoencoder. Finally, we present numerical illustrations to affirm the compression behavior in time-varying Hamiltonian dynamics in the presence of external fields. We also discuss the potential implications of the findings for machine learning tools to efficiently solve the many-body or other high dimensional Schr{o}dinger equations.
Dirac particle represents a fundamental constituent of our nature. Simulation of Dirac particle dynamics by a controllable quantum system using quantum walks will allow us to investigate the non-classical nature of dynamics in its discrete form. In this work, starting from a modified version of one-spatial dimensional general inhomogeneous split-step discrete quantum walk we derive an effective Hamiltonian which mimics a single massive Dirac particle dynamics in curved $(1+1)$ space-time dimension coupled to $U(1)$ gauge potential---which is a forward step towards the simulation of the unification of electromagnetic and gravitational forces in lower dimension and at the single particle level. Implementation of this simulation scheme in simple qubit-system has been demonstrated. We show that the same Hamiltonian can represent $(2+1)$ space-time dimensional Dirac particle dynamics when one of the spatial momenta remains fixed. We also discuss how we can include $U(N)$ gauge potential in our scheme, in order to capture other fundamental force effects on the Dirac particle. The emergence of curvature in the two-particle split-step quantum walk has also been investigated while the particles are interacting through their entangled coin operations.
Entangled states are a crucial resource for quantum-based technologies such as quantum computers and quantum communication systems (1,2). Exploring new methods for entanglement generation is important for diversifying and eventually improving current approaches. Here, we create entanglement in atomic ions by applying laser fields to constrain the evolution to a restricted number of states, in an approach that has become known as quantum Zeno dynamics (3-5). With two trapped $^9rm{Be}^+$ ions, we obtain Bell state fidelities up to $0.990^{+2}_{-5}$, with three ions, a W-state (6) fidelity of $0.910^{+4}_{-7}$ is obtained. Compared to other methods of producing entanglement in trapped ions, this procedure is relatively insensitive to certain imperfections such as fluctuations in laser intensity, laser frequency, and ion-motion frequencies.
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested, Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so called polymer representation of the Heisenberg-Weyl (H-W) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed.
The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state subspace of a certain quantum optimization problem. This involves extending the notion of clustering to Hilbert space, where the classical Hamming distance is not immediately useful. Quantum clusters correspond to macroscopically distinct subspaces of the full quantum ground state space which grow with the system size. We explicitly demonstrate that such clusters arise in the solution space of random quantum satisfiability (3-QSAT) at its satisfiability transition. We estimate both the number of these clusters and their internal entropy. The former are given by the number of hardcore dimer coverings of the core of the interaction graph, while the latter is related to the underconstrained degrees of freedom not touched by the dimers. We additionally provide new numerical evidence suggesting that the 3-QSAT satisfiability transition may coincide with the product satisfiability transition, which would imply the absence of an intermediate entangled satisfiable phase.