No Arabic abstract
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested, Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so called polymer representation of the Heisenberg-Weyl (H-W) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed.
It is shown that a general radial conformal Killing vector in Minkowski space-time can be associated to a generator of time evolution in conformal quantum mechanics. Among these conformal Killing vectors one finds a class which maps causal diamonds in Minkowski space-time into themselves. The flow of such Killing vectors describes worldlines of accelerated observers with a finite lifetime within the causal diamond. Time evolution of static diamond observers is equivalent to time evolution in conformal quantum mechanics governed by a hyperbolic Hamiltonian and covering only a segment of the time axis. This indicates that the Unruh temperature perceived by static diamond observers in the vacuum state of inertial observers in Minkowski space can be obtained from the behaviour of the two-point functions of conformal quantum mechanics.
A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. I
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. These corrections generically violate the Equivalence Principle. The GUP has also been indirectly applied to the gravitational source by relating the GUP modified Hawking temperature to a deformation of the background metric. Such a deformed background metric determines new geodesic motions without violating the Equivalence Principle. We point out here that the two effects are mutually exclusive when compared with experimental bounds. Moreover, the former stems from modified Poisson brackets obtained from a wrong classical limit of the deformed canonical commutators.
We perform a minisuperspace analysis of an information-theoretic nonlinear Wheeler-deWitt (WDW) equation for de Sitter universes. The nonlinear WDW equation, which is in the form of a difference-differential equation, is transformed into a pure difference equation for the probability density by using the current conservation constraint. In the present study we observe some new features not seen in our previous approximate investigation, such as a nonzero minimum and maximum allowable size to the quantum universe: An examination of the effective classical dynamics supports the interpretation of a bouncing universe. The studied model suggests implications for the early universe, and plausibly also for the future of an ongoing accelerating phase of the universe.
A new idea for the quantization of dynamic systems, as well as space time itself, using a stochastic metric is proposed. The quantum mechanics of a mass point is constructed on a space time manifold using a stochastic metric. A stochastic metric space is, in brief, a metric space whose metric tensor is given stochastically according to some appropriate distribution function. A mathematically consistent model of a space time manifold equipping a stochastic metric is proposed in this report. The quantum theory in the local Minkowski space can be recognized as a classical theory on the stochastic Lorentz-metric-space. A stochastic calculus on the space time manifold is performed using white noise functional analysis. A path-integral quantization is introduced as a stochastic integration of a function of the action integral, and it is shown that path-integrals on the stochastic metric space are mathematically well-defined for large variety of potential functions. The Newton--Nelson equation of motion can also be obtained from the Newtonian equation of motion on the stochastic metric space. It is also shown that the commutation relation required under the canonical quantization is consistent with the stochastic quantization introduced in this report. The quantum effects of general relativity are also analyzed through natural use of the stochastic metrics. Some example of quantum effects on the universe is discussed.