Do you want to publish a course? Click here

Acoustic plasmons and conducting carriers in hole-doped cuprate superconductors

99   0   0.0 ( 0 )
 Added by Amol Singh
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The superconductivity of cuprates, which has been a mystery ever since its discovery decades ago, is created through doping electrons or holes into a Mott insulator. There, however, exists an inherent electron-hole asymmetry in cuprates. The layered crystal structures of cuprates enable collective charge excitations fundamentally different from those of three-dimensional metals, i.e., acoustic plasmons. Acoustic plasmons have been recently observed in electron-doped cuprates by resonant inelastic X-ray scattering (RIXS); in contrast, there is no evidence for acoustic plasmons in hole-doped cuprates, despite extensive measurements. This contrast led us to investigate whether the doped holes in cuprates La$_{2-x}$Sr$_x$CuO$_4$ are conducting carriers or are too incoherent to induce collective charge excitation. Here we present momentum-resolved RIXS measurements and calculations of collective charge response via the loss function to reconcile the aforementioned issues. Our results provide unprecedented spectroscopic evidence for the acoustic plasmons and long sought conducting p holes in hole-doped cuprates.



rate research

Read More

High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X-ray scattering (RIXS) to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors [La2-xSrxCuO4 (LSCO) and Bi2Sr1.6La0.4CuO6+d (Bi2201)], crucially completing the picture. Interestingly, in contrast to the quasi-static charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behaviour of valence charges in hole-doped cuprates.
AgF$_2$ is a correlated charge-transfer insulator with properties remarkably similar to insulating cuprates which have raised hope that it may lead to a new family of unconventional superconductors upon doping. We use ab initio computations to study doping strategies leading to metallization. Because the upper Hubbard band is very narrow electron doping leads to undesired strongly self-trapped states (polarons). For the hole-doped case, polaron tendency is stronger than for cuprates but still moderate enough to expect that heavily doped compounds may become metallic. Since the strong electron lattice coupling originates in the strong buckling we study also an hypothetically flat allotrope and show that it has excellent prospect to become metallic. We compare the AgF2 behavior with that for the hole-doped conventional cuprate La$_2$CuO$_4$ and electron-doped Nd$_2$CuO$_4$. Our results show a clear path to achieve high temperature superconductivity in silver fluorides.
Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.
High-temperature superconductivity (HTSC) mysteriously emerges upon doping holes or electrons into insulating copper oxides with antiferromagnetic (AFM) order. It has been thought that the large energy scale of magnetic excitations, compared to phonon energies for example, lies at the heart of an electronically-driven superconducting phase at high temperatures. However, despite extensive studies, little information is available for comparison of high-energy magnetic excitations of hole- and electron-doped superconductors to assess a possible correlation with the respective superconducting transition temperatures. Here, we use resonant inelastic x-ray scattering (RIXS) at the Cu L3-edge to reveal high-energy collective excitations in the archetype electron-doped cuprate Nd2-xCexCuO4 (NCCO). Surprisingly, despite the fact that the spin stiffness is zero and the AFM correlations are short-ranged, magnetic excitations harden significantly across the AFM-HTSC phase boundary, in stark contrast with the hole-doped cuprates. Furthermore, we find an unexpected and highly dispersive mode in superconducting NCCO that is undetected in the hole-doped compounds, which emanates from the zone center with a characteristic energy comparable to the pseudogap, and may signal a quantum phase distinct from superconductivity. The uncovered asymmetry in the high-energy collective excitations with respect to hole and electron doping provides additional constraints for modeling the HTSC cuprates.
71 - T.J. Reber , X. Zhou , N.C. Plumb 2015
The strange-metal phase of the cuprate high temperature superconductors, above where the superconductivity sets in as a function of temperature, is widely considered more exotic and mysterious than the superconductivity itself. Here, based upon detailed angle resolved photoemission spectroscopy measurements of Bi$_2$Sr$_2$CaCu$_2$O$_8$$_+$$_delta$ over a wide range of doping levels, we present a new unifying phenomenology for the non-Fermi liquid normal-state interactions (scattering rates) in the nodal direction. This new phenomenology has a continuously varying power law exponent (hence named a Power Law Liquid or PLL), which with doping varies smoothly from a quadratic Fermi Liquid to a linear Marginal Fermi Liquid and beyond. Using the extracted PLL parameters we can calculate the optics and resistivity over a wide range of doping and normal-state temperature values, with the results closely matching the experimental curves. This agreement includes the presence of the $$pseudogap$$ temperature scale observed in the resistivity curves including the apparent quantum critical point. This breaks the direct link to the pseudogapping of antinodal spectral weight observed at similar (but here argued to be different) temperature scales, and also gives a new direction for searches of the microscopic mechanism at the heart of these and perhaps many other non-Fermi-liquid systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا