Do you want to publish a course? Click here

Nature versus nurture: relic nature and environment of the most massive passive galaxies at $z < 0.5$

86   0   0.0 ( 0 )
 Added by Crescenzo Tortora
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Relic galaxies are thought to be the progenitors of high-redshift red nuggets that for some reason missed the channels of size growth and evolved passively and undisturbed since the first star formation burst (at $z>2$). These local ultracompact old galaxies are unique laboratories for studying the star formation processes at high redshift and thus the early stage of galaxy formation scenarios. Counterintuitively, theoretical and observational studies indicate that relics are more common in denser environments, where merging events predominate. To verify this scenario, we compared the number counts of a sample of ultracompact massive galaxies (UCMGs) selected within the third data release of the Kilo Degree Survey, that is, systems with sizes $R_{rm e} < 1.5 , rm kpc$ and stellar masses $M_{rm star} > 8 times 10^{10}, rm M_{odot}$, with the number counts of galaxies with the same masses but normal sizes in field and cluster environments. Based on their optical and near-infrared colors, these UCMGs are likely to be mainly old, and hence representative of the relic population. We find that both UCMGs and normal-size galaxies are more abundant in clusters and their relative fraction depends only mildly on the global environment, with denser environments penalizing the survival of relics. Hence, UCMGs (and likely relics overall) are not special because of the environment effect on their nurture, but rather they are just a product of the stochasticity of the merging processes regardless of the global environment in which they live.



rate research

Read More

Aims. We seek is to identify old and massive galaxies at 0.5<z<2.1 on the basis of the magnesium index MgUV and then study their physical properties. We computed the MgUV index based on the best spectral fitting template of $sim$3700 galaxies using data from the VLT VIMOS Deep Survey (VVDS) and VIMOS Ultra Deep Survey (VUDS) galaxy redshift surveys. Based on galaxies with the largest signal to noise and the best fit spectra we selected 103 objects with the highest spectral MgUV signature. We performed an independent fit of the photometric data of these galaxies and computed their stellar masses, star formation rates, extinction by dust and age, and we related these quantities to the MgUV index. We find that the MgUV index is a suitable tracer of early-type galaxies at an advanced stage of evolution. Selecting galaxies with the highest MgUV index allows us to choose the most massive, passive, and oldest galaxies at any epoch. The formation epoch t_f computed from the fitted age as a function of the total mass in stars supports the downsizing formation paradigm in which galaxies with the highest mass formed most of their stars at an earlier epoch.
We use the statistics of the VIPERS survey to investigate the relation between the surface mean stellar mass density Sigma=Mstar/(2*pi*Re^2) of massive passive galaxies (MPGs, Mstar>10^11 Msun) and their environment in the redshift range 0.5<z<0.8. Passive galaxies were selected on the basis of their NUVrK colors (~900 objects), and the environment was defined as the galaxy density contrast, delta, using the fifth nearest-neighbor approach. The analysis of Sigma vs. delta was carried out in two stellar mass bins. In galaxies with Mstar<2*10^11 Msun, no correlation between Sigma and delta is observed. This implies that the accretion of satellite galaxies, which is more frequent in denser environments and efficient in reducing the galaxy Sigma, is not relevant in the formation and evolution of these systems. Conversely, in galaxies with Mstar>2*10^11 Msun, we find an excess of MPGs with low Sigma and a deficit of high-Sigma MPGs in the densest regions wrt other environments. We interpret this result as due to the migration of some high-Sigma MPGs (<1% of the total population of MPGs) into low-Sigma MPGs, probably through mergers or cannibalism of small satellites. In summary, our results imply that the accretion of satellite galaxies has a marginal role in the mass-assembly history of most MPGs. We have previously found that the number density of VIPERS massive star-forming galaxies (MSFGs) declines rapidily from z=0.8 to z=0.5, which mirrors the rapid increase in the number density of MPGs. This indicates that the MSFGs at z>0.8 migrate to the MPG population. Here, we investigate the Sigma-delta relation of MSFGs at z>0.8 and find that it is consistent within 1 sigma with that of low-Sigma MPGs at z<0.8. Thus, the results of this and our previous paper show that MSFGs at z>0.8 are consistent in terms of number and environment with being the progenitors of low-Sigma MPGs at z<0.8.
We investigate the origin, the shape, the scatter, and the cosmic evolution in the observed relationship between specific angular momentum $j_star$ and the stellar mass $M_star$ in early-type (ETGs) and late-type galaxies (LTGs). Specifically, we exploit the observed star-formation efficiency and chemical abundance to infer the fraction $f_{rm inf}$ of baryons that infall toward the central regions of galaxies where star formation can occur. We find $f_{rm inf}approx 1$ for LTGs and $approx 0.4$ for ETGs with an uncertainty of about $0.25$ dex, consistent with a biased collapse. By comparing with the locally observed $j_star$ vs. $M_star$ relations for LTGs and ETGs we estimate the fraction $f_j$ of the initial specific angular momentum associated to the infalling gas that is retained in the stellar component: for LTGs we find $f_japprox 1.11^{+0.75}_{-0.44}$, in line with the classic disc formation picture; for ETGs we infer $f_japprox 0.64^{+0.20}_{-0.16}$, that can be traced back to a $z<1$ evolution via dry mergers. We also show that the observed scatter in the $j_{star}$ vs. $M_{star}$ relation for both galaxy types is mainly contributed by the intrinsic dispersion in the spin parameters of the host dark matter halo. The biased collapse plus mergers scenario implies that the specific angular momentum in the stellar components of ETG progenitors at $zsim 2$ is already close to the local values, in pleasing agreement with observations. All in all, we argue such a behavior to be imprinted by nature and not nurtured substantially by the environment.
We study the impact of local density and stellar mass on the morphology of ~500 quiescent (Q) and SFGs from the VIS3COS survey. We perform B/D decomposition of the SBPs and find ~41% of 10^10 Msun galaxies to be best fitted with 2 components. We complement our analysis with non-parametric measurements and qualitative visual classifications. We find that galaxy morphology depends on stellar mass and environment for our sample as a whole. We only find an impact of the environment on galaxy sizes for galaxies more massive than 10^11 Msun. We find higher n and B/T in high-density regions when compared to low-density counterparts at similar stellar masses. We also find that higher stellar mass galaxies have steeper light profiles compared to the lower ones. Using visual classifications, we find a morphology-density relation at z~0.84 for galaxies more massive than 10^10 Msun, with elliptical galaxies being dominant at high-density regions and disks more common in low-density regions. However, when splitting the sample into colour-colour selected SF and Q sub-populations, there are no statistically significant differences between low- and high-density regions. We find that Q galaxies are smaller, have higher n, and higher B/T when compared to SF counterparts. We confirm these trends with non-parametric quantities, finding Q galaxies to be smoother and having most of their light over smaller areas than SFGs. Overall, we find that the dependence of morphology on stellar mass is stronger than with local density and these relations are strongly correlated with the quenching fraction. The change in average morphology corresponds to a change in the relative fractions of blue disk-like galaxies and red elliptical galaxies with stellar mass and environment. We hypothesize that the processes responsible for the quenching of SF must also affect the galaxy morphology on similar timescales.
This work investigates the main mechanism(s) that regulate the specific star formation rate (SSFR) in nearby galaxies, cross-correlating two proxies of this quantity -- the equivalent width of the Ha line and the $(u-r)$ colour -- with other physical properties (mass, metallicity, environment, morphology, and the presence of close companions) in a sample of $sim82500$ galaxies extracted from the Sloan Digital Sky Survey (SDSS). The existence of a relatively tight `ageing sequence in the colour-equivalent width plane favours a scenario where the secular conversion of gas into stars (i.e. `nature) is the main physical driver of the instantaneous SSFR and the gradual transition from a `chemically primitive (metal-poor and intensely star-forming) state to a `chemically evolved (metal-rich and passively evolving) system. Nevertheless, environmental factors (i.e. `nurture) are also important. In the field, galaxies may be temporarily affected by discrete `quenching and `rejuvenation episodes, but such events show little statistical significance in a probabilistic sense, and we find no evidence that galaxy interactions are, on average, a dominant driver of star formation. Although visually classified mergers tend to display systematically higher EW(H$alpha$) and bluer $(u-r)$ colours for a given luminosity, most galaxies with high SSFR have uncertain morphologies, which could be due to either internal or external processes. Field galaxies of early and late morphological types are consistent with the gradual `ageing scenario, with no obvious signatures of a sudden decrease in their SSFR. In contrast, star formation is significantly reduced and sometimes completely quenched on a short time scale in dense environments, where many objects are found on a `quenched sequence in the colour-equivalent width plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا