No Arabic abstract
We present a systematic procedure to extract the dynamics of the low energy soft mode in SYK type models with a single energy scale $J$ and emergent reparametrization symmetry in the IR. This is given in the framework of the perturbation theory scheme of arXiv:1608.07567 based on specific (off-shell) breaking of conformal invariance in the UV, adjusted to yield the exact large-$N$ saddle point. While this breaking formally vanishes on-shell, it has a non-trivial effect on correlation functions and the effective action. In particular, it leads to the Schwarzian action with a specific coupling to bi-local matter. The method is applied to the evaluation of $O(1)$ corrections to the correlation function of bi-locals. As a byproduct we confirm precise agreement with the explicit, symmetry breaking procedure. We provide a verification in the large $q$ limit (Liouville theory), where the correlators can be calculated exactly at all length scales. In this case, our scheme illuminates how the enhanced $O(J)$ and the subleading $O(1)$ contributions originate from the Schwarzian dynamics of the soft mode and its interaction with $h=2$ (bi-local) matter.
We investigate second order conformal perturbation theory for $mathbb{Z}_2$ orbifolds of conformal field theories in two dimensions. To evaluate the necessary twisted sector correlation functions and their integrals, we map them from the sphere to its torus double cover. We discuss how this relates crossing symmetry to the modular group, and introduce a regularization scheme on the cover that allows to evaluate the integrals numerically. These methods do not require supersymmetry. As an application, we show that in the torus orbifold of 8 and 16 free bosons, $mathbb{Z}_2$ twist fields are marginal at first order, but stop being marginal at second order.
We argue that stringy effects in a putative gravity-dual picture for SYK-like models are related to the branching time, a kinetic coefficient defined in terms of the retarded kernel. A bound on the branching time is established assuming that the leading diagrams are ladders with thin rungs. Thus, such models are unlikely candidates for sub-AdS holography. In the weak coupling limit, we derive a relation between the branching time, the Lyapunov exponent, and the quasiparticle lifetime using two different approximations.
We study a two-site Sachdev-Ye-Kitaev (SYK) model with complex couplings, and identify a low temperature transition to a gapped phase characterized by a constant in temperature free energy. This transition is observed without introducing a coupling between the two sites, and only appears after ensemble average over the complex couplings. We propose a gravity interpretation of these results by constructing an explicit solution of Jackiw-Teitelboim (JT) gravity with matter: a two-dimensional Euclidean wormhole whose geometry is the double trumpet. This solution is sustained by imaginary sources for a marginal operator, without the need of a coupling between the two boundaries. As the temperature is decreased, there is a transition from a disconnected phase with two black holes to the connected wormhole phase, in qualitative agreement with the SYK observation. The expectation value of the marginal operator is an order parameter for this transition. This illustrates in a concrete setup how a Euclidean wormhole can arise from an average over field theory couplings.
Proposals are made to describe 1D, N = 4 supersymmetrical systems that extend SYK models by compactifying from 4D, N = 1 supersymmetric Lagrangians involving chiral, vector, and tensor supermultiplets. Quartic fermionic vertices are generated via integrals over the whole superspace, while 2(q-1)-point fermionic vertices are generated via superpotentials. The coupling constants in the superfield Lagrangians are arbitrary, and can be chosen to be Gaussian random. In that case, these 1D, N = 4 supersymmetric SYK models would exhibit Wishart-Laguerre randomness, which share the same feature among other 1D supersymmetric SYK models in literature. One difference with 1D, N = 1 and N = 2 models though, is our models contain dynamical bosons, but this is consistent with other 1D, N = 4 and 2D, N = 2 models in literature. Added conjectures on duality and possible mirror symmetry realizations on these models is noted.
We study the SYK model in the large $N$ limit beyond the replica-diagonal approximation. First we show that there are exact replica-nondiagonal solutions of the saddle point equations for $q=2$ for any finite replica number $M$. In the interacting $q=4$ case we are able to construct the numerical solutions, which are in one-to-one correspondence to the analytic solutions of the quadratic model. These solutions are singular in the $M to 0$ limit in both quadratic and quartic interaction cases. The calculations of the on-shell action at finite integer $M$ show that the nondiagonal replica-symmetric saddles are subleading in both quadratic and quartic cases. We also study replica-nondiagonal solutions of the SYK in the strong coupling limit. For arbitrary $q$ we show that besides the usual solutions of the replica-diagonal saddle point equations in the conformal limit, there are also replica-nondiagonal solutions for any value of $M$ (including zero). The specific configurations that we study, have factorized time and replica dependencies. The corresponding saddle point equations are separable at strong coupling, and can be solved using the Parisi ansatz from spin glass theory. We construct the solutions which correspond to the replica-symmetric case and to one-step replica symmetry breaking. We compute the regularized free energy on these solutions in the limit of zero replicas. It is observed that there are nondiagonal solutions with the regularized free energy lower than that of the standard diagonal conformal solution.