Do you want to publish a course? Click here

Replica-nondiagonal solutions in the SYK model

78   0   0.0 ( 0 )
 Added by Mikhail Khramtsov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the SYK model in the large $N$ limit beyond the replica-diagonal approximation. First we show that there are exact replica-nondiagonal solutions of the saddle point equations for $q=2$ for any finite replica number $M$. In the interacting $q=4$ case we are able to construct the numerical solutions, which are in one-to-one correspondence to the analytic solutions of the quadratic model. These solutions are singular in the $M to 0$ limit in both quadratic and quartic interaction cases. The calculations of the on-shell action at finite integer $M$ show that the nondiagonal replica-symmetric saddles are subleading in both quadratic and quartic cases. We also study replica-nondiagonal solutions of the SYK in the strong coupling limit. For arbitrary $q$ we show that besides the usual solutions of the replica-diagonal saddle point equations in the conformal limit, there are also replica-nondiagonal solutions for any value of $M$ (including zero). The specific configurations that we study, have factorized time and replica dependencies. The corresponding saddle point equations are separable at strong coupling, and can be solved using the Parisi ansatz from spin glass theory. We construct the solutions which correspond to the replica-symmetric case and to one-step replica symmetry breaking. We compute the regularized free energy on these solutions in the limit of zero replicas. It is observed that there are nondiagonal solutions with the regularized free energy lower than that of the standard diagonal conformal solution.



rate research

Read More

We study a two-site Sachdev-Ye-Kitaev (SYK) model with complex couplings, and identify a low temperature transition to a gapped phase characterized by a constant in temperature free energy. This transition is observed without introducing a coupling between the two sites, and only appears after ensemble average over the complex couplings. We propose a gravity interpretation of these results by constructing an explicit solution of Jackiw-Teitelboim (JT) gravity with matter: a two-dimensional Euclidean wormhole whose geometry is the double trumpet. This solution is sustained by imaginary sources for a marginal operator, without the need of a coupling between the two boundaries. As the temperature is decreased, there is a transition from a disconnected phase with two black holes to the connected wormhole phase, in qualitative agreement with the SYK observation. The expectation value of the marginal operator is an order parameter for this transition. This illustrates in a concrete setup how a Euclidean wormhole can arise from an average over field theory couplings.
We continue the study of the Sachdev-Ye-Kitaev model in the Large $N$ limit. Following our formulation in terms of bi-local collective fields with dynamical reparametrization symmetry, we perform perturbative calculations around the conformal IR point.
We consider pure states in the SYK model. These are given by a simple local condition on the Majorana fermions, evolved over an interval in Euclidean time to project on to low energy states. We find that diagonal correlators are exactly the same as thermal correlators at leading orders in the large $N$ expansion. We also describe off diagonal correlators that decay in time, and are given simply in terms of thermal correlators. We also solved the model numerically for low values of $N$ and noticed that subsystems become typically entangled after an interaction time. In addition, we identified configurations in two dimensional nearly-$AdS_2$ gravity with similar symmetries. These gravity configurations correspond to states with regions behind horizons. The region behind the horizon can be made accessible by modifying the Hamiltonian of the boundary theory using the the knowledge of the particular microstate. The set of microstates in the SYK theory with these properties generates the full Hilbert space.
We study the SYK$_{2}$ model of $N$ Majorana fermions with random quadratic interactions through a detailed spectral analysis and by coupling the model to 2- and 4-point sources. In particular, we define the generalized spectral form factor and level spacing distribution function by generalizing from the partition function to the generating function. For $N=2$, we obtain an exact solution of the generalized spectral form factor. It exhibits qualitatively similar behavior to the higher $N$ case with a source term. The exact solution helps understand the behavior of the generalized spectral form factor. We calculate the generalized level spacing distribution function and the mean value of the adjacent gap ratio defined by the generating function. For the SYK$_2$ model with a 4-point source term, we find a Gaussian unitary ensemble behavior in the near-integrable region of the theory, which indicates a transition to chaos. This behavior is confirmed by the connected part of the generalized spectral form factor with an unfolded spectrum. The departure from this Gaussian random matrix behavior as the relative strength of the source term is increased is consistent with the observation that the 4-point source term alone, without the SYK$_2$ couplings turned on, exhibits an integrable spectrum from the spectral form factor and level spacing distribution function in the large $N$ limit.
We investigate two sparse Sachdev-Ye-Kitaev (SYK) systems coupled by a bilinear term as a holographic quantum mechanical description of an eternal traversable wormhole in the low temperature limit. Each SYK system consists of $N$ Majorana fermions coupled by random $q$-body interactions. The degree of sparseness is captured by a regular hypergraph in such a way that the Hamiltonian contains exactly $k,N$ independent terms. We improve on the theoretical understanding of the sparseness property by using known measures of hypergraph expansion. We show that the sparse version of the two coupled SYK model is gapped with a ground state close to a thermofield double state. Using Krylov subspace and parallelization techniques, we simulate the system for $q=4$ and $q=8.$ The sparsity of the model allows us to explore larger values of $N$ than the ones existing in the literature for the all-to-all SYK. We analyze in detail the two-point functions and the transmission amplitude of signals between the two systems. We identify a range of parameters where revivals obey the scaling predicted by holography and signals can be interpreted as traversing the wormhole.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا