No Arabic abstract
We present an extension of the Hamiltonian of the two dimensional limit of the vibron model encompassing all possible interactions up to four-body operators. We apply this Hamiltonian to the modeling of the experimental bending spectrum of fourteen molecules. The bending degrees of freedom of the selected molecular species include all possible situations: linear, bent, and nonrigid equilibrium structures; demonstrating the flexibility of the algebraic approach, that allows for the consideration of utterly different physical cases with a general formalism and a single Hamiltonian. For each case, we compute predicted term values used to depict the quantum monodromy diagram, the Birge-Sponer plot, the participation ratio. We also show the bending energy functional obtained using the coherent --or intrinsic-- state formalism.
Concentrating on bosonic lattice systems, we ask whether and how Excited State Quantum Phase Transition (ESQPT) singularities occur in condensed matter systems with ground state QPTs. We study in particular the spectral singularities above the ground-state phase diagram of the boson Hubbard model. As a general prerequisite, we point out the analogy between ESQPTs and van Hove singularities (vHss).
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major challenge. We introduce spinor Bose-Einstein condensates as a versatile platform for studies of ESQPTs. Based on the mean-field dynamics, we define a topological order parameter that distinguishes between excited-state phases, and discuss how to interferometrically access the order parameter in current experiments. Our work opens the way for the experimental characterization of excited-state quantum phases in atomic many-body systems.
Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-state quantum phase transitions (ESQPTs) have not received so much attention. Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is presented in this work. The study is performed through the Hamiltonian diagonalization for selected values of the control parameters in order to cover the most interesting regions of the system phase diagram. [Method:] A Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting boson model (IBM) is diagonalized for selected values of the parameters and properties such as the density of states, the Peres lattices, the nearest-neighbor spacing distribution, and the participation ratio are analyzed. Results: An overview of the spectrum of the two-fluid Lipkin model for selected positions in the phase diagram has been obtained. The location of the excited-state quantum phase transition can be easily singled out with the Peres lattice, with the nearest-neighbor spacing distribution, with Poincare sections or with the participation ratio. Conclusions: This study completes the analysis of QPTs for the two-fluid Lipkin model, extending the previous study to excited states. The ESQPT signatures in composed systems behave in the same way as in single ones, although the evidences of their presence can be sometimes blurred. The Peres lattice turns out to be a convenient tool to look into the position of the ESQPT and to define the concept of phase in the excited states realm.
Using the Wherl entropy, we study the delocalization in phase-space of energy eigenstates in the vicinity of avoided crossing in the Lipkin-Meshkov-Glick model. These avoided crossing, appearing at intermediate energies in a certain parameter region of the model, originate classically from pairs of trajectories lying in different phase space regions, which contrary to the low energy regime, are not connected by the discrete parity symmetry of the model. As coupling parameters are varied, a sudden increase of the Wherl entropy is observed for eigenstates close to the critical energy of the excited-state quantum phase transition (ESQPT). This allows to detect when an avoided crossing is accompanied by a superposition of the pair of classical trajectories in the Husimi functions of eigenstates. This superposition yields an enhancement of dynamical tunneling, which is observed by considering initial Bloch states that evolve partially into the partner region of the paired classical trajectories, thus breaking the quantum-classical correspondence in the evolution of observables.
The presence of solvent tunes many properties of a molecule, such as its ground and excited state geometry, dipole moment, excitation energy, and absorption spectrum. Because the energy of the system will vary depending on the solvent configuration, explicit solute-solvent interactions are key to understanding solution-phase reactivity and spectroscopy, simulating accurate inhomogeneous broadening, and predicting absorption spectra. In this tutorial review, we give an overview of factors to consider when modeling excited states of molecules interacting with explicit solvent. We provide practical guidelines for sampling solute-solvent configurations, choosing a solvent model, performing the excited state electronic structure calculations, and computing spectral lineshapes. We also present our recent results combining the vertical excitation energies computed from an ensemble of solute-solvent configurations with the vibronic spectra obtained from a small number of frozen solvent configurations, resulting in improved simulation of absorption spectra for molecules in solution.