Do you want to publish a course? Click here

Excited-state quantum phase transitions in a two-fluid Lipkin model

109   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-state quantum phase transitions (ESQPTs) have not received so much attention. Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is presented in this work. The study is performed through the Hamiltonian diagonalization for selected values of the control parameters in order to cover the most interesting regions of the system phase diagram. [Method:] A Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting boson model (IBM) is diagonalized for selected values of the parameters and properties such as the density of states, the Peres lattices, the nearest-neighbor spacing distribution, and the participation ratio are analyzed. Results: An overview of the spectrum of the two-fluid Lipkin model for selected positions in the phase diagram has been obtained. The location of the excited-state quantum phase transition can be easily singled out with the Peres lattice, with the nearest-neighbor spacing distribution, with Poincare sections or with the participation ratio. Conclusions: This study completes the analysis of QPTs for the two-fluid Lipkin model, extending the previous study to excited states. The ESQPT signatures in composed systems behave in the same way as in single ones, although the evidences of their presence can be sometimes blurred. The Peres lattice turns out to be a convenient tool to look into the position of the ESQPT and to define the concept of phase in the excited states realm.



rate research

Read More

Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major challenge. We introduce spinor Bose-Einstein condensates as a versatile platform for studies of ESQPTs. Based on the mean-field dynamics, we define a topological order parameter that distinguishes between excited-state phases, and discuss how to interferometrically access the order parameter in current experiments. Our work opens the way for the experimental characterization of excited-state quantum phases in atomic many-body systems.
A main distinguishing feature of non-Hermitian quantum mechanics is the presence of exceptional points (EPs). They correspond to the coalescence of two energy levels and their respective eigenvectors. Here, we use the Lipkin-Meshkov-Glick (LMG) model as a testbed to explore the strong connection between EPs and the onset of excited state quantum phase transitions (ESQPTs). We show that for finite systems, the exact degeneracies (EPs) obtained with the non-Hermitian LMG Hamiltonian continued into the complex plane are directly linked with the avoided crossings that characterize the ESQPTs for the real (physical) LMG Hamiltonian. The values of the complex control parameter $alpha$ that lead to the EPs approach the real axis as the system size $Nrightarrow infty$. This happens for both, the EPs that are close to the separatrix that marks the ESQPT and also for those that are far away, although in the latter case, the rate the imaginary part of $alpha$ reduces to zero as $N$ increases is smaller. With the method of Pade approximants, we can extract the critical value of $alpha$.
79 - Michal Macek 2019
Concentrating on bosonic lattice systems, we ask whether and how Excited State Quantum Phase Transition (ESQPT) singularities occur in condensed matter systems with ground state QPTs. We study in particular the spectral singularities above the ground-state phase diagram of the boson Hubbard model. As a general prerequisite, we point out the analogy between ESQPTs and van Hove singularities (vHss).
Atomic nuclei are important laboratories for exploring and testing new insights into the universe, such as experiments to directly detect dark matter or explore properties of neutrinos. The targets of interest are often heavy, complex nuclei that challenge our ability to reliably model them (as well as quantify the uncertainty of those models) with classical computers. Hence there is great interest in applying quantum computation to nuclear structure for these applications. As an early step in this direction, especially with regards to the uncertainties in the relevant quantum calculations, we develop circuits to implement variational quantum eigensolver (VQE) algorithms for the Lipkin-Meshkov-Glick model, which is often used in the nuclear physics community as a testbed for many-body methods. We present quantum circuits for VQE for 2 and 3 particles and discuss the construction of circuits for more particles. Implementing the VQE for a 2-particle system on the IBM Quantum Experience, we identify initialization and two-qubit gates as the largest sources of error. We find that error mitigation procedures reduce the errors in the results significantly, but additional quantum hardware improvements are needed for quantum calculations to be sufficiently accurate to be competitive with the best current classical methods.
We study the two-dimensional Kane-Mele-Hubbard model at half filling by means of quantum Monte Carlo simulations. We present a refined phase boundary for the quantum spin liquid. The topological insulator at finite Hubbard interaction strength is adiabatically connected to the groundstate of the Kane-Mele model. In the presence of spin-orbit coupling, magnetic order at large Hubbard U is restricted to the transverse direction. The transition from the topological band insulator to the antiferromagnetic Mott insulator is in the universality class of the three-dimensional XY model. The numerical data suggest that the spin liquid to topological insulator and spin liquid to Mott insulator transitions are both continuous.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا