No Arabic abstract
The AdS soliton is a nonsingular spacetime that has a flat conformal boundary with a compact $S^1$ direction. We find a horizonless cohomogeneity-1 metric that describes nonlinear gravitational oscillations of the AdS soliton in five dimensions. We call this spacetime the resonating AdS soliton. This solution is obtained as the nonlinear extension of normal modes of the AdS soliton dual to spin-2 glueball excitations. The boundary energy momentum tensor of the resonating AdS soliton has time periodic components, and it is interpreted as a coherently excited state in the dual field theory. Physical quantities of the resonating AdS soliton are multivalued at a fixed energy, suggesting a transition between different frequency solutions. The energy of the resonating AdS soliton is higher than that of the undeformed AdS soliton, in accordance with the positive energy conjecture proposed by Horowitz and Myers.
We investigate the marginally stable modes of the scalar (vector) perturbations in the AdS soliton background coupled to electric field. In the probe limit, we find that the marginally stable modes can reveal the onset of the phase transitions of this model. The critical chemical potentials obtained from this approach are in good agreement with the previous numerical or analytical results.
We investigate the holographic p-wave superfluid in the background metric of the AdS soliton with $RF^{2}$ corrections. Two models, namely, the Maxwell complex vector field model and Yang-Mills theory, are studied in the above context by employing the Sturm-Liouville approach as well as the shooting method. When turning on the spatial components of the gauge field, one observes that, in the probe limit, the inclusion of $RF^{2}$ corrections hinders the superfluid phase transition. On the other hand, however, in the absence of the superfluid velocity, it is found that the $RF^2$ corrections lead to distinct effects for the two models. Regardless of either the $RF^2$ correction or the spatial component of the gauge field, the phase transition of the system is observed to be always of the second order. Moreover, a linear relationship between the charge density and chemical potential is largely established near the critical point in both holographic superfluid models.
We study aspects of anti-de Sitter space in the context of the Swampland. In particular, we conjecture that the near-flat limit of pure AdS belongs to the Swampland, as it is necessarily accompanied by an infinite tower of light states. The mass of the tower is power-law in the cosmological constant, with a power of $frac{1}{2}$ for the supersymmetric case. We discuss relations between this behaviour and other Swampland conjectures such as the censorship of an unbounded number of massless fields, and the refined de Sitter conjecture. Moreover, we propose that changes to the AdS radius have an interpretation in terms of a generalised distance conjecture which associates a distance to variations of all fields. In this framework, we argue that the distance to the $Lambda rightarrow 0$ limit of AdS is infinite, leading to the light tower of states. We also discuss implications of the conjecture for de Sitter space.
McNamara and Vafa conjectured that any pair of consistent quantum gravity theories can be connected by a domain wall. We test the conjecture in the context of the AdS/CFT correspondence. There are topological constraints on existence of an interface between the corresponding conformal field theories. We discuss how to construct domain walls in AdS predicted by the conjecture when the corresponding conformal interfaces are prohibited by topological obstructions.
In this paper we look for AdS solutions to generalised gravity theories in the bulk in various spacetime dimensions. The bulk gravity action includes the action of a non-minimally coupled scalar field with gravity, and a higher-derivative action of gravity. The usual Einstein-Hilbert gravity is induced when the scalar acquires a non-zero vacuum expectation value. The equation of motion in the bulk shows scenarios where AdS geometry emerges on-shell. We further obtain the action of the fluctuation fields on the background at quadratic and cubic orders.