Do you want to publish a course? Click here

Antiferromagnetic Half-skyrmions and Bimerons at room temperature

274   0   0.0 ( 0 )
 Added by Hariom K Jani
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the quest for post-CMOS technologies, ferromagnetic skyrmions and their anti-particles have shown great promise as topologically protected solitonic information carriers in memory-in-logic or neuromorphic devices. However, the presence of dipolar fields in ferromagnets, restricting the formation of ultra-small topological textures, and the deleterious skyrmion Hall effect when driven by spin torques have thus far inhibited their practical implementations. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling have recently come into intense focus, but their experimental realizations in natural antiferromagnetic systems are yet to emerge. Here, we demonstrate a family of topological antiferromagnetic spin-textures in $alpha$-Fe$_2$O$_3$ - an earth-abundant oxide insulator - capped with a Pt over-layer. By exploiting a first-order analogue of the Kibble-Zurek mechanism, we stabilize exotic merons-antimerons (half-skyrmions), and bimerons, which can be erased by magnetic fields and re-generated by temperature cycling. These structures have characteristic sizes of the order ~100 nm that can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways to further scaling. Driven by current-based spin torques from the heavy-metal over-layer, some of these AFM textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature.



rate research

Read More

177 - X. Marti , I. Fina , C. Frontera 2015
The bistability of ordered spin states in ferromagnets (FMs) provides the magnetic memory functionality. Traditionally, the macroscopic moment of ordered spins in FMs is utilized to write information on magnetic media by a weak external magnetic field, and the FM stray field is used for reading. However, the latest generation of magnetic random access memories demonstrates a new efficient approach in which magnetic fields are replaced by electrical means for reading and writing. This concept may eventually leave the sensitivity of FMs to magnetic fields as a mere weakness for retention and the FM stray fields as a mere obstacle for high-density memory integration. In this paper we report a room-temperature bistable antiferromagnetic (AFM) memory which produces negligible stray fields and is inert in strong magnetic fields. We use a resistor made of an FeRh AFM whose transition to a FM order 100 degrees above room-temperature, allows us to magnetically set different collective directions of Fe moments. Upon cooling to room-temperature, the AFM order sets in with the direction the AFM moments pre-determined by the field and moment direction in the high temperature FM state. For electrical reading, we use an antiferromagnetic analogue of the anisotropic magnetoresistance (AMR). We report microscopic theory modeling which confirms that this archetypical spintronic effect discovered more than 150 years ago in FMs, can be equally present in AFMs. Our work demonstrates the feasibility to realize room-temperature spintronic memories with AFMs which greatly expands the magnetic materials base for these devices and offers properties which are unparalleled in FMs.
We demonstrate that magnetic skyrmions with a mean diameter around 60 nm can be stabilized at room temperature and zero external magnetic field in an exchange-biased Pt/Co/NiFe/IrMn multilayer stack. This is achieved through an advanced optimization of the multilayer stack composition in order to balance the different magnetic energies controlling the skyrmion size and stability. Magnetic imaging is performed both with magnetic force microscopy and scanning Nitrogen-Vacancy magnetometry, the latter providing unambiguous measurements at zero external magnetic field. In such samples, we show that exchange bias provides an immunity of the skyrmion spin texture to moderate external magnetic field, in the tens of mT range, which is an important feature for applications as memory devices. These results establish exchange-biased multilayer stacks as a promising platform towards the effective realization of memory and logic devices based on magnetic skyrmions.
Facing the ever-growing demand for data storage will most probably require a new paradigm. Magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriya interactions, which reach about 2 mJ/m2 in the case of the Ir/Co/Pt multilayers. Using a magnetization-sensitive scanning x-ray transmission microscopy technique, we imaged magnetic bubble-like domains in these multilayers. The study of their behavir in magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the Dzyaloshinsskii-Moriya interaction. This discoevry of stable skyrmions at room temperature in a technologically relevant material opens the way for device applications in a near future.
Magnetic skyrmions are topological spin textures holding great potential as nanoscale information carriers. Recently, skyrmions have been predicted in antiferromagnets, with key advantages in terms of stability, size and dynamical properties over their ferromagnetic analogs. However, their experimental demonstration is lacking. Here we show that skyrmions can be stabilized at zero field and room temperature at the interface of sputtered IrMn thin films exchange-coupled to a ferromagnetic layer. This was realised by replicating the skyrmionic spin texture of the ferromagnet in the antiferromagnet, via annealing above the blocking temperature of the ferromagnet/antiferromagnet bilayer. Using the high-spatial-resolution magnetic microscopy technique XMCD-PEEM, we observe the skyrmions within the IrMn interfacial layer from the XMCD signal of the uncompensated Mn spins at the interface. This result opens up a path for logic and memory devices based on skyrmion manipulation in antiferromagnets.
We investigate the magnetic phase diagram of 1T-vanadium dichalcogenide monolayers in Janus configuration (VSeTe, VSSe, and VSTe) from first principles. The magnetic exchange, magnetocrystalline anisotropy and Dzyaloshinskii-Moriya interaction (DMI) are computed using density functional theory calculations, while the temperature- and field-dependent magnetic phase diagram is simulated using large-scale atomistic spin modeling in the presence of thermal fluctuations. The boundaries between magnetic ordered phases and paramagnetic phases are determined by cross-analyzing the average topological charge with the magnetic susceptibility and its derivatives. We find that in such Janus monolayers, DMI is large enough to stabilize non-trivial chiral textures. In VSeTe monolayer, an asymmetrical bimeron lattice state is stabilized for in-plane field configuration whereas skyrmion lattice is formed for out-of-plane field configuration. In VSSe monolayer, a skyrmion lattice is stabilized for out-of-plane field configuration. This study demonstrates that non-centrosymmetric van der Waals magnetic monolayers can support topological textures close to room temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا