No Arabic abstract
Earths carbon deficit has been an outstanding problem in our understanding of the formation of our Solar System. A possible solution would be the sublimation of carbon grains at the so-called soot line (~300 K) early in the planet-formation process. Here, we argue that the most likely signatures of this process are an excess of hydrocarbons and nitriles inside the soot line, and a higher excitation temperature for these molecules compared to oxygen-bearing complex organics that desorb around the water snowline (~100 K). Such characteristics have been reported in the literature, for example, in Orion KL, although not uniformly, potentially due to differences in observational settings and analysis methods of different studies or related to the episodic nature of protostellar accretion. If this process is active, this would mean that there is a heretofore unknown component to the carbon chemistry during the protostellar phase that is acting from the top down - starting from the destruction of larger species - instead of from the bottom up from atoms. In the presence of such a top-down component, the origin of organic molecules needs to be re-explored.
Protoplanetary disks are the birthplaces of planetary systems. The evolution of the star-disk system and the disk chemical composition determines the initial conditions for planet formation. Therefore a comprehensive understanding of the main physical and chemical processes in disks is crucial for our understanding of planet formation. We give an overview of the early evolution of disks, discuss the importance of the stellar high-energy radiation for disk evolution and describe the general thermal and chemical structure of disks. Finally we provide an overview of observational tracers of the gas component and disk winds.
The long-term evolution of a circumstellar disk starting from its formation and ending in the T Tauri phase was simulated numerically with the purpose of studying the evolution of dust in the disk with distinct values of viscous alpha-parameter and dust fragmentation velocity v_frag. We solved numerical hydrodynamics equations in the thin-disk limit, which are modified to include a dust component consisting of two parts: sub-micron-sized dust and grown dust with a maximum radius a_r. The former is strictly coupled to the gas, while the latter interacts with the gas via friction. The conversion of small to grown dust, dust growth, and dust self-gravity are also considered. We found that the process of dust growth known for the older protoplanetary phase also holds for the embedded phase of disk evolution. The dust growth efficiency depends on the radial distance from the star - a_r is largest in the inner disk and gradually declines with radial distance. In the inner disk, a_r is limited by the dust fragmentation barrier. The process of small-to-grown dust conversion is very fast once the disk is formed. The total mass of grown dust in the disk (beyond 1 AU) reaches tens or even hundreds of Earth masses already in the embedded phase of star formation and even a greater amount of grown dust drifts in the inner, unresolved 1 AU of the disk. Dust does not usually grow to radii greater than a few cm. A notable exception are models with alpha <= 10^{-3}, in which case a zone with reduced mass transport develops in the inner disk and dust can grow to meter-sized boulders in the inner 10 AU. Grown dust drifts inward and accumulates in the inner disk regions. This effect is most pronounced in the alpha <= 10^{-3} models where several hundreds of Earth masses can be accumulated in a narrow region of several AU from the star by the end of embedded phase. (abridged).
Deuterated methanol is one of the most robust windows astrochemists have on the individual chemical reactions forming deuterium-bearing molecules and the physicochemical history of the regions where they reside. The first-time detection of mono- and di-deuterated methanol in a cometary coma is presented for comet 67P/Churyumov-Gerasimenko using Rosetta-ROSINA data. D-methanol (CH3OD and CH2DOH combined) and D2-methanol (CH2DOD and CHD2OH combined) have an abundance of 5.5+/-0.46 and 0.00069+/-0.00014 per cent relative to normal methanol. The data span a methanol deuteration fraction (D/H ratio) in the 0.71-6.6 per cent range, accounting for statistical corrections for the location of D in the molecule and including statistical error propagation in the ROSINA measurements. It is argued that cometary CH2DOH forms from CO hydrogenation to CH3OH and subsequent H-D substitution reactions in CH3-R. CHD2OH is likely produced from deuterated formaldehyde. Meanwhile, CH3OD and CH2DOD, could form via H-D exchange reactions in OH-R in the presence of deuterated water ice. Methanol formation and deuteration is argued to occur at the same epoch as D2O formation from HDO, with formation of mono-deuterated water, hydrogen sulfide, and ammonia occurring prior to that. The cometary D-methanol/methanol ratio is demonstrated to agree most closely with that in prestellar cores and low-mass protostellar regions. The results suggest that cometary methanol stems from the innate cold (10-20 K) prestellar core that birthed our Solar System. Cometary volatiles individually reflect the evolutionary phases of star formation from cloud to core to protostar.
The mechanisms causing millimeter-wave polarization in protoplanetary disks are under debate. To disentangle the polarization mechanisms, we observe the protoplanetary disk around HL Tau at 3.1 mm with the Atacama Large Millimeter/submillimeter Array (ALMA), which had polarization detected with CARMA at 1.3 mm. We successfully detect the ring-like azimuthal polarized emission at 3.1 mm. This indicates that dust grains are aligned with the major axis being in the azimuthal direction, which is consistent with the theory of radiative alignment of elongated dust grains, where the major axis of dust grains is perpendicular to the radiation flux. Furthermore, the morphology of the polarization vectors at 3.1 mm is completely different from those at 1.3 mm. We interpret that the polarization at 3.1 mm to be dominated by the grain alignment with the radiative flux producing azimuthal polarization vectors, while the self-scattering dominates at 1.3 mm and produces the polarization vectors parallel to the minor axis of the disk. By modeling the total polarization fraction with a single grain population model, the maximum grain size is constrained to be $100{rm~mu m}$, which is smaller than the previous predictions based on the spectral index between ALMA at 3 mm and VLA at 7 mm.
Dust clouds are ubiquitous in the atmospheres of hot Jupiters and affect their observable properties. The alignment of dust grains in the clouds and resulting dust polarization is a promising method to study magnetic fields of exoplanets. Moreover, the grain size distribution plays an important role in physical and chemical processes in the atmospheres, which is rather uncertain in atmospheres. In this paper, we first study grain alignment of dust grains in the atmospheres of hot Jupiters by RAdiative Torques (RATs). We find that silicate grains can be aligned by RATs with the magnetic fields (B-RAT) due to strong magnetic fields of hot Jupiters, but carbonaceous grains of diamagnetic material tend to be aligned with the radiation direction (k-RAT). At a low altitude of $r<2R_{rm p}$ with $R_{rm p}$ being the planet radius, only large grains can be aligned, but tiny grains of $asim 0.01mu$m can be aligned at a high altitude of $r>3R_{rm p}$. We then study rotational disruption of dust grains by the RAdiative Torque Disruption (RATD) mechanism. We find that large grains can be disrupted by RATD into smaller sizes. Grains of high tensile strength are disrupted at an altitude of $r>3R_{rm p}$, but weak grains can be disrupted at a lower altitude. We suggest that the disruption of large grains into smaller ones can facilitate dust clouds to escape to high altitudes due to lower gravity and may explain the presence of high-altitude clouds in hot Jupiter as well as super-puff atmospheres.