No Arabic abstract
The mechanisms causing millimeter-wave polarization in protoplanetary disks are under debate. To disentangle the polarization mechanisms, we observe the protoplanetary disk around HL Tau at 3.1 mm with the Atacama Large Millimeter/submillimeter Array (ALMA), which had polarization detected with CARMA at 1.3 mm. We successfully detect the ring-like azimuthal polarized emission at 3.1 mm. This indicates that dust grains are aligned with the major axis being in the azimuthal direction, which is consistent with the theory of radiative alignment of elongated dust grains, where the major axis of dust grains is perpendicular to the radiation flux. Furthermore, the morphology of the polarization vectors at 3.1 mm is completely different from those at 1.3 mm. We interpret that the polarization at 3.1 mm to be dominated by the grain alignment with the radiative flux producing azimuthal polarization vectors, while the self-scattering dominates at 1.3 mm and produces the polarization vectors parallel to the minor axis of the disk. By modeling the total polarization fraction with a single grain population model, the maximum grain size is constrained to be $100{rm~mu m}$, which is smaller than the previous predictions based on the spectral index between ALMA at 3 mm and VLA at 7 mm.
Dust clouds are ubiquitous in the atmospheres of hot Jupiters and affect their observable properties. The alignment of dust grains in the clouds and resulting dust polarization is a promising method to study magnetic fields of exoplanets. Moreover, the grain size distribution plays an important role in physical and chemical processes in the atmospheres, which is rather uncertain in atmospheres. In this paper, we first study grain alignment of dust grains in the atmospheres of hot Jupiters by RAdiative Torques (RATs). We find that silicate grains can be aligned by RATs with the magnetic fields (B-RAT) due to strong magnetic fields of hot Jupiters, but carbonaceous grains of diamagnetic material tend to be aligned with the radiation direction (k-RAT). At a low altitude of $r<2R_{rm p}$ with $R_{rm p}$ being the planet radius, only large grains can be aligned, but tiny grains of $asim 0.01mu$m can be aligned at a high altitude of $r>3R_{rm p}$. We then study rotational disruption of dust grains by the RAdiative Torque Disruption (RATD) mechanism. We find that large grains can be disrupted by RATD into smaller sizes. Grains of high tensile strength are disrupted at an altitude of $r>3R_{rm p}$, but weak grains can be disrupted at a lower altitude. We suggest that the disruption of large grains into smaller ones can facilitate dust clouds to escape to high altitudes due to lower gravity and may explain the presence of high-altitude clouds in hot Jupiter as well as super-puff atmospheres.
The protoplanetary disk around Ophiuchus IRS 48 shows an azimuthally asymmetric dust distribution in (sub-)millimeter observations, which is interpreted as a vortex, where millimeter/centimeter-sized particles are trapped at the location of the continuum peak. In this paper, we present 860 $mu$m ALMA observations of polarized dust emission of this disk. The polarized emission was detected toward a part of the disk. The polarization vectors are parallel to the disk minor axis, and the polarization fraction was derived to be $1-2$%. These characteristics are consistent with models of self-scattering of submillimeter-wave emission, which indicate a maximum grain size of $sim100$ $mu$m. However, this is inconsistent with the previous interpretation of millimeter/centimeter dust particles being trapped by a vortex. To explain both, ALMA polarization and previous ALMA and VLA observations, we suggest that the thermal emission at 860 $mu$m wavelength is optically thick ($tau_{rm abs}sim7.3$) at the dust trap with the maximum observable grain size of $sim100$ $mu$m rather than an optically thin case with $sim$ cm dust grains. We note that we cannot rule out that larger dust grains are accumulated near the midplane if the 860 $mu$m thermal emission is optically thick.
Dust polarization at (sub)millimeter wavelengths has been observed for many protoplanetary disks. Theoretically, multiple origins potentially contribute to the polarized emission but it is still uncertain what mechanism is dominant in disk millimeter polarization. To quantitatively address the origin, we perform radiative transfer calculations of the mixture of alignment and self-scattering induced polarization to reproduce the 3.1 mm polarization of the HL Tau disk, which shows azimuthal pattern in polarization vectors. We find that a mixture of the grain alignment and self-scattering is essential to reproduce the HL Tau 3.1 mm polarization properties. Our model shows that the polarization of the HL Tau at 3.1 mm can be decomposed to be the combination of the self-scattering parallel to the minor axis and the alignment-induced polarization parallel to the major axis, with the orders of $sim 0.5%$ fraction for each component. This slightly eases the tight constraints on the grain size of $sim 70~{rm~mu m}$ to be $sim 130 {rm~mu m}$ in the previous studies but further modeling is needed. In addition, the grain alignment model requires effectively prolate grains but the physics to reproduce it in protoplanetary disks is still a mystery.
We have carried out two-dimensional hydrodynamical simulations to study the effects of disk self-gravity and radiative cooling on the formation of gaps and spirals. (1) With disk self-gravity included, we find stronger, more tightly-wound spirals and deeper gaps in more massive disks. The deeper gaps are due to the larger Angular Momentum Flux (AMF) of the waves excited in more massive disks, as expected from the linear theory. The position of the secondary gap does not change, provided that the disk is not extremely massive ($Q gtrsim 2$). (2) With radiative cooling included, the excited spirals become monotonically more open (less tightly-wound) as the disks cooling timescale increases. On the other hand, the amplitude and strength of the spirals decrease when the cooling time increases from a small value to $sim 1/Omega$, but then the amplitude starts to increase again when the cooling time continues to increase. This indicates that radiative dissipation becomes important for waves with $T_{cool}sim$ 1. Consequently, the induced primary gap is narrower and the secondary gap becomes significantly shallower when the cooling time becomes $sim 1/Omega$. When the secondary gap is present, the position of it moves to the inner disk from the fast cooling cases to the slow cooling cases. The dependence of gap properties on the cooling timescale (e.g. in AS 209) provides a new way to constrain the disk optical depth and thus disk surface density.
We present the implementation of a dust growth and fragmentation module in the public Smoothed Particle Hydrodynamics (SPH) code PHANTOM. This module is made available for public use with this paper. The coagulation model considers locally monodisperse dust size distributions around single values that are carried by the SPH particles. Along with the presentation of the model, implementation and tests, we showcase growth and fragmentation in a few typical circumstellar disc simulations and revisit previous results. The module is also interfaced with the radiative transfer code MCFOST, which facilitates the comparison between simulations and ALMA observations by generating synthetic maps. Circumstellar disc simulations with growth and fragmentation reproduce the `self-induced dust trap mechanism first proposed by Gonzalez et al., which supports its existence. Synthetic images of discs featuring this mechanism suggest it would be detectable by ALMA as a bright axisymmetric ring at several tens of au from the star. With this paper, our aim is to provide a public tool to be able to study and explore dust growth in a variety of applications related to planet formation.