Do you want to publish a course? Click here

Binary linear codes with few weights from two-to-one functions

105   0   0.0 ( 0 )
 Added by Kangquan Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we apply two-to-one functions over $mathbb{F}_{2^n}$ in two generic constructions of binary linear codes. We consider two-to-one functions in two forms: (1) generalized quadratic functions; and (2) $left(x^{2^t}+xright)^e$ with $gcd(t, n)=1$ and $gcdleft(e, 2^n-1right)=1$. Based on the study of the Walsh transforms of those functions or their related-ones, we present many classes of linear codes with few nonzero weights, including one weight, three weights, four weights and five weights. The weight distributions of the proposed codes with one weight and with three weights are determined. In addition, we discuss the minimum distance of the dual of the constructed codes and show that some of them achieve the sphere packing bound. { Moreover, several examples show that some of our codes are optimal and some have the best known parameters.}



rate research

Read More

103 - Gaopeng Jian 2018
Linear codes have been an interesting topic in both theory and practice for many years. In this paper, a class of $q$-ary linear codes with few weights are presented and their weight distributions are determined using Gauss periods. Some of the linear codes obtained are optimal or almost optimal with respect to the Griesmer bound. As s applications, these linear codes can be used to construct secret sharing schemes with nice access structures.
We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a~function of the gap to capacity. This result exhibits the first known family of binary codes that attain both optimal scaling and quasi-linear complexity of encoding and decoding. Our proof is based on the construction and analysis of binary polar codes with large kernels. When communicating reliably at rates within $varepsilon > 0$ of capacity, the code length $n$ often scales as $O(1/varepsilon^{mu})$, where the constant $mu$ is called the scaling exponent. It is known that the optimal scaling exponent is $mu=2$, and it is achieved by random linear codes. The scaling exponent of conventional polar codes (based on the $2times 2$ kernel) on the BEC is $mu=3.63$. This falls far short of the optimal scaling guaranteed by random codes. Our main contribution is a rigorous proof of the following result: for the BEC, there exist $elltimesell$ binary kernels, such that polar codes constructed from these kernels achieve scaling exponent $mu(ell)$ that tends to the optimal value of $2$ as $ell$ grows. We furthermore characterize precisely how large $ell$ needs to be as a function of the gap between $mu(ell)$ and $2$. The resulting binary codes maintain the recursive structure of conventional polar codes, and thereby achieve construction complexity $O(n)$ and encoding/decoding complexity $O(nlog n)$.
98 - Gaopeng Jian 2016
The generalized Hamming weights of a linear code have been extensively studied since Wei first use them to characterize the cryptography performance of a linear code over the wire-tap channel of type II. In this paper, we investigate the generalized Hamming weights of three classes of linear codes constructed through defining sets and determine them partly for some cases. Particularly, in the semiprimitive case we solve an problem left in Yang et al. (IEEE Trans. Inf. Theory 61(9): 4905--4913, 2015).
Linear codes with a few weights have important applications in authentication codes, secret sharing, consumer electronics, etc.. The determination of the parameters such as Hamming weight distributions and complete weight enumerators of linear codes are important research topics. In this paper, we consider some classes of linear codes with a few weights and determine the complete weight enumerators from which the corresponding Hamming weight distributions are derived with help of some sums involving Legendre symbol.
232 - Jinquan Luo 2009
Let $q=2^n$, $0leq kleq n-1$, $n/gcd(n,k)$ be odd and $k eq n/3, 2n/3$. In this paper the value distribution of following exponential sums [sumlimits_{xin bF_q}(-1)^{mathrm{Tr}_1^n(alpha x^{2^{2k}+1}+beta x^{2^k+1}+ga x)}quad(alpha,beta,gain bF_{q})] is determined. As an application, the weight distribution of the binary cyclic code $cC$, with parity-check polynomial $h_1(x)h_2(x)h_3(x)$ where $h_1(x)$, $h_2(x)$ and $h_3(x)$ are the minimal polynomials of $pi^{-1}$, $pi^{-(2^k+1)}$ and $pi^{-(2^{2k}+1)}$ respectively for a primitive element $pi$ of $bF_q$, is also determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا