Do you want to publish a course? Click here

On the complete weight enumerators of some linear codes with a few weights

92   0   0.0 ( 0 )
 Added by Minglong Qi
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Linear codes with a few weights have important applications in authentication codes, secret sharing, consumer electronics, etc.. The determination of the parameters such as Hamming weight distributions and complete weight enumerators of linear codes are important research topics. In this paper, we consider some classes of linear codes with a few weights and determine the complete weight enumerators from which the corresponding Hamming weight distributions are derived with help of some sums involving Legendre symbol.



rate research

Read More

103 - Gaopeng Jian 2018
Linear codes have been an interesting topic in both theory and practice for many years. In this paper, a class of $q$-ary linear codes with few weights are presented and their weight distributions are determined using Gauss periods. Some of the linear codes obtained are optimal or almost optimal with respect to the Griesmer bound. As s applications, these linear codes can be used to construct secret sharing schemes with nice access structures.
146 - Cicero Carvalho 2013
We study affine cartesian codes, which are a Reed-Muller type of evaluation codes, where polynomials are evaluated at the cartesian product of n subsets of a finite field F_q. These codes appeared recently in a work by H. Lopez, C. Renteria-Marquez and R. Villareal and, in a generalized form, in a work by O. Geil and C. Thomsen. Using methods from Grobner basis theory we determine the second Hamming weight (also called next-to-minimal weight) for particular cases of affine cartesian codes and also some higher Hamming weights of this type of code.
In this paper, we apply two-to-one functions over $mathbb{F}_{2^n}$ in two generic constructions of binary linear codes. We consider two-to-one functions in two forms: (1) generalized quadratic functions; and (2) $left(x^{2^t}+xright)^e$ with $gcd(t, n)=1$ and $gcdleft(e, 2^n-1right)=1$. Based on the study of the Walsh transforms of those functions or their related-ones, we present many classes of linear codes with few nonzero weights, including one weight, three weights, four weights and five weights. The weight distributions of the proposed codes with one weight and with three weights are determined. In addition, we discuss the minimum distance of the dual of the constructed codes and show that some of them achieve the sphere packing bound. { Moreover, several examples show that some of our codes are optimal and some have the best known parameters.}
Let $p$ be a prime number. Irreducible cyclic codes of length $p^2-1$ and dimension $2$ over the integers modulo $p^h$ are shown to have exactly two nonzero Hamming weights. The construction uses the Galois ring of characteristic $p^h$ and order $p^{2h}.$ When the check polynomial is primitive, the code meets the Griesmer bound of (Shiromoto, Storme) (2012). By puncturing some projective codes are constructed. Those in length $p+1$ meet a Singleton-like bound of (Shiromoto , 2000). An infinite family of strongly regular graphs is constructed as coset graphs of the duals of these projective codes. A common cover of all these graphs, for fixed $p$, is provided by considering the Hensel lifting of these cyclic codes over the $p$-adic numbers.
We consider $q$-ary (linear and nonlinear) block codes with exactly two distances: $d$ and $d+delta$. Several combinatorial constructions of optimal such codes are given. In the linear (but not necessary projective) case, we prove that under certain conditions the existence of such linear $2$-weight code with $delta > 1$ implies the following equality of great common divisors: $(d,q) = (delta,q)$. Upper bounds for the maximum cardinality of such codes are derived by linear programming and from few-distance spherical codes. Tables of lower and upper bounds for small $q = 2,3,4$ and $q,n < 50$ are presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا