Do you want to publish a course? Click here

Distinguishing between wet and dry atmospheres of TRAPPIST-1 e and f

102   0   0.0 ( 0 )
 Added by Fabian Wunderlich
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nearby TRAPPIST-1 planetary system is an exciting target for characterizing the atmospheres of terrestrial planets. The planets e, f and g lie in the circumstellar habitable zone and could sustain liquid water on their surfaces. During the extended pre-main sequence phase of TRAPPIST-1, however, the planets may have experienced extreme water loss, leading to a desiccated mantle. The presence or absence of an ocean is challenging to determine with current and next generation telescopes. Therefore, we investigate whether indirect evidence of an ocean and/or a biosphere can be inferred from observations of the planetary atmosphere. We introduce a newly developed photochemical model for planetary atmospheres, coupled to a radiative-convective model and validate it against modern Earth, Venus and Mars. The coupled model is applied to the TRAPPIST-1 planets e and f, assuming different surface conditions and varying amounts of CO$_2$ in the atmosphere. As input for the model we use a constructed spectrum of TRAPPIST-1, based on near-simultaneous data from X-ray to optical wavelengths. We compute cloud-free transmission spectra of the planetary atmospheres and determine the detectability of molecular features using the Extremely Large Telescope (ELT) and the James Webb Space Telescope (JWST). We find that under certain conditions, the existence or non-existence of a biosphere and/or an ocean can be inferred by combining 30 transit observations with ELT and JWST within the K-band. A non-detection of CO could suggest the existence of an ocean, whereas significant CH$_4$ hints at the presence of a biosphere.



rate research

Read More

We obtained high-resolution spectra of the ultra-cool M-dwarf TRAPPIST-1 during the transit of its planet `b using two high dispersion near-infrared spectrographs, IRD instrument on the Subaru 8.2m telescope and HPF instrument on the 10m Hobby-Eberly Telescope. These spectroscopic observations are complemented by a photometric transit observation for planet `b using the APO/ARCTIC, which assisted us to capture the correct transit times for our transit spectroscopy. Using the data obtained by the new IRD and HPF observations, as well as the prior transit observations of planets `b, `e and `f from IRD, we attempt to constrain the atmospheric escape of the planet using the He I triplet 10830 {AA} absorption line. We do not detect evidence for any primordial extended H-He atmospheres in all three planets. To limit any planet related absorption, we place an upper limit on the equivalent widths of <7.754 m{AA} for planet `b, <10.458 m{AA} for planet `e, and <4.143 m{AA} for planet `f at 95% confidence from the IRD data, and <3.467 m{AA} for planet `b at 95% confidence from HPF data. Using these limits along with a solar-like composition isothermal Parker wind model, we attempt to constrain the mass-loss rates for the three planets. For TRAPPIST-1b, our models exclude the highest possible energy-limited rate for a wind temperature <5000 K. This non-detection of extended atmospheres having low mean-molecular weight in all three planets aids in further constraining their atmospheric composition by steering the focus towards the search of high molecular weight species in their atmospheres.
Transiting compact multi-planet systems provide many unique opportunities to characterize the planets, including studies of size distributions, mean densities, orbital dynamics, and atmospheric compositions. The relatively short orbital periods in these systems ensure that events requiring specific orbital locations of the planets (such as primary transit and secondary eclipse points) occur with high frequency. The orbital motion and associated phase variations of the planets provide a means to constrain the atmospheric compositions through measurement of their albedos. Here we describe the expected phase variations of the TRAPPIST-1 system and times of superior conjunction when the summation of phase effects produce maximum amplitudes. We also describe the infrared flux emitted by the TRAPPIST-1 planets and the influence on the overall phase amplitudes. We further present the results from using the global circulation model ROCKE-3D to model the atmospheres of TRAPPIST-1e and TRAPPIST-1f assuming modern Earth and Archean atmospheric compositions. These simulations are used to calculate predicted phase curves for both reflected light and thermal emission components. We discuss the detectability of these signatures and the future prospects for similar studies of phase variations for relatively faint M stars.
The TRAPPIST-1 system is unique in that it has a chain of seven terrestrial Earth-like planets located close to or in its habitable zone. In this paper, we study the effect of potential cometary impacts on the TRAPPIST-1 planets and how they would affect the primordial atmospheres of these planets. We consider both atmospheric mass loss and volatile delivery with a view to assessing whether any sort of life has a chance to develop. We ran N-body simulations to investigate the orbital evolution of potential impacting comets, to determine which planets are more likely to be impacted and the distributions of impact velocities. We consider three scenarios that could potentially throw comets into the inner region (i.e within 0.1au where the seven planets are located) from an (as yet undetected) outer belt similar to the Kuiper belt or an Oort cloud: Planet scattering, the Kozai-Lidov mechanism and Galactic tides. For the different scenarios, we quantify, for each planet, how much atmospheric mass is lost and what mass of volatiles can be delivered over the age of the system depending on the mass scattered out of the outer belt. We find that the resulting high velocity impacts can easily destroy the primordial atmospheres of all seven planets, even if the mass scattered from the outer belt is as low as that of the Kuiper belt. However, we find that the atmospheres of the outermost planets f, g and h can also easily be replenished with cometary volatiles (e.g. $sim$ an Earth ocean mass of water could be delivered). These scenarios would thus imply that the atmospheres of these outermost planets could be more massive than those of the innermost planets, and have volatiles-enriched composition.
The James Webb Space Telescope (JWST) will offer the first opportunity to characterize terrestrial exoplanets with sufficient precision to identify high mean molecular weight atmospheres, and TRAPPIST-1s seven known transiting Earth-sized planets are particularly favorable targets. To assist community preparations for JWST, we use simulations of plausible post-ocean-loss and habitable environments for the TRAPPIST-1 exoplanets, and test simulations of all bright object time series spectroscopy modes and all MIRI photometry filters to determine optimal observing strategies for atmospheric detection and characterization using both transmission and emission observations. We find that transmission spectroscopy with NIRSpec Prism is optimal for detecting terrestrial, CO2 containing atmospheres, potentially in fewer than 10 transits for all seven TRAPPIST-1 planets, if they lack high altitude aerosols. If the TRAPPIST-1 planets possess Venus-like H2SO4 aerosols, up to 12 times more transits may be required to detect atmospheres. We present optimal instruments and observing modes for the detection of individual molecular species in a given terrestrial atmosphere and an observational strategy for discriminating between evolutionary states. We find that water may be prohibitively difficult to detect in both Venus-like and habitable atmospheres due to its presence lower in the atmosphere where transmission spectra are less sensitive. Although the presence of biogenic O2 and O3 will be extremely challenging to detect, abiotically produced oxygen from past ocean loss may be detectable for all seven TRAPPIST-1 planets via O2-O2 collisionally-induced absorption at 1.06 and 1.27 microns, or via NIR O3 features for the outer three planets. Our results constitute a suite of hypotheses on the nature and detectability of highly-evolved terrestrial exoplanet atmospheres that may be tested with JWST.
TRAPPIST-1 is a fantastic nearby (~39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable system of potentially habitable planets. Since the announcement of the discovery of TRAPPIST-1 planets in 2016, a growing number of techniques and approaches have been used and proposed to reveal its true nature. Here we have compiled a state-of-the-art overview of all the observational and theoretical constraints that have been obtained so far using these techniques and approaches. The goal is to get a better understanding of whether or not TRAPPIST-1 planets can have atmospheres, and if so, what they are made of. For this, we surveyed the literature on TRAPPIST-1 about topics as broad as irradiation environment, orbital architecture, transit observations, density measurements, stellar contamination, and numerical climate and escape models. Each of these topics adds a brick to our understanding of the likely atmospheres of the seven planets. We show that (i) HST transit observations, (ii) density measurements, (iii) atmospheric escape modelling, and (iv) gas accretion modelling altogether offer solid evidence against the presence of H2-dominated atmospheres around TRAPPIST-1 planets. This means they likely have either (i) a high molecular weight atmosphere or (ii) no atmosphere at all. There are several key challenges ahead to characterize the bulk compositions of the atmospheres (if present) of TRAPPIST-1 planets. The main one so far is characterizing and correcting for the effects of stellar contamination. Fortunately, a new wave of observations with the James Webb Space Telescope and near-infrared high-resolution ground-based spectrographs on very large telescopes will bring significant advances in the coming decade.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا