No Arabic abstract
The TRAPPIST-1 system is unique in that it has a chain of seven terrestrial Earth-like planets located close to or in its habitable zone. In this paper, we study the effect of potential cometary impacts on the TRAPPIST-1 planets and how they would affect the primordial atmospheres of these planets. We consider both atmospheric mass loss and volatile delivery with a view to assessing whether any sort of life has a chance to develop. We ran N-body simulations to investigate the orbital evolution of potential impacting comets, to determine which planets are more likely to be impacted and the distributions of impact velocities. We consider three scenarios that could potentially throw comets into the inner region (i.e within 0.1au where the seven planets are located) from an (as yet undetected) outer belt similar to the Kuiper belt or an Oort cloud: Planet scattering, the Kozai-Lidov mechanism and Galactic tides. For the different scenarios, we quantify, for each planet, how much atmospheric mass is lost and what mass of volatiles can be delivered over the age of the system depending on the mass scattered out of the outer belt. We find that the resulting high velocity impacts can easily destroy the primordial atmospheres of all seven planets, even if the mass scattered from the outer belt is as low as that of the Kuiper belt. However, we find that the atmospheres of the outermost planets f, g and h can also easily be replenished with cometary volatiles (e.g. $sim$ an Earth ocean mass of water could be delivered). These scenarios would thus imply that the atmospheres of these outermost planets could be more massive than those of the innermost planets, and have volatiles-enriched composition.
Transiting compact multi-planet systems provide many unique opportunities to characterize the planets, including studies of size distributions, mean densities, orbital dynamics, and atmospheric compositions. The relatively short orbital periods in these systems ensure that events requiring specific orbital locations of the planets (such as primary transit and secondary eclipse points) occur with high frequency. The orbital motion and associated phase variations of the planets provide a means to constrain the atmospheric compositions through measurement of their albedos. Here we describe the expected phase variations of the TRAPPIST-1 system and times of superior conjunction when the summation of phase effects produce maximum amplitudes. We also describe the infrared flux emitted by the TRAPPIST-1 planets and the influence on the overall phase amplitudes. We further present the results from using the global circulation model ROCKE-3D to model the atmospheres of TRAPPIST-1e and TRAPPIST-1f assuming modern Earth and Archean atmospheric compositions. These simulations are used to calculate predicted phase curves for both reflected light and thermal emission components. We discuss the detectability of these signatures and the future prospects for similar studies of phase variations for relatively faint M stars.
Recently, gas disks have been discovered around main sequence stars well beyond the usual protoplanetary disk lifetimes (i.e., > 10 Myrs), when planets have already formed. These gas disks, mainly composed of CO, carbon, and oxygen seem to be ubiquitous in systems with planetesimal belts (similar to our Kuiper belt), and can last for hundreds of millions of years. Planets orbiting in these gas disks will accrete a large quantity of gas that will transform their primordial atmospheres into new secondary atmospheres with compositions similar to that of the parent gas disk. Here, we quantify how large a secondary atmosphere can be created for a variety of observed gas disks and for a wide range of planet types. We find that gas accretion in this late phase is very significant and an Earths atmospheric mass of gas is readily accreted on terrestrial planets in very tenuous gas disks. In slightly more massive disks, we show that massive CO atmospheres can be accreted, forming planets with up to sub-Neptune-like pressures. Our new results demonstrate that new secondary atmospheres with high metallicities and high C/O ratios will be created in these late gas disks, resetting their primordial compositions inherited from the protoplanetary disk phase, and providing a new birth to planets that lost their atmosphere to photoevaporation or giant impacts. We therefore propose a new paradigm for the formation of atmospheres on low-mass planets, which can be tested with future observations (JWST, ELT, ARIEL). We also show that this late accretion would show a very clear signature in Sub-Neptunes or cold exo-Jupiters. Finally, we find that accretion creates cavities in late gas disks, which could be used as a new planet detection method, for low mass planets a few au to a few tens of au from their host stars.
TRAPPIST-1 is a fantastic nearby (~39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable system of potentially habitable planets. Since the announcement of the discovery of TRAPPIST-1 planets in 2016, a growing number of techniques and approaches have been used and proposed to reveal its true nature. Here we have compiled a state-of-the-art overview of all the observational and theoretical constraints that have been obtained so far using these techniques and approaches. The goal is to get a better understanding of whether or not TRAPPIST-1 planets can have atmospheres, and if so, what they are made of. For this, we surveyed the literature on TRAPPIST-1 about topics as broad as irradiation environment, orbital architecture, transit observations, density measurements, stellar contamination, and numerical climate and escape models. Each of these topics adds a brick to our understanding of the likely atmospheres of the seven planets. We show that (i) HST transit observations, (ii) density measurements, (iii) atmospheric escape modelling, and (iv) gas accretion modelling altogether offer solid evidence against the presence of H2-dominated atmospheres around TRAPPIST-1 planets. This means they likely have either (i) a high molecular weight atmosphere or (ii) no atmosphere at all. There are several key challenges ahead to characterize the bulk compositions of the atmospheres (if present) of TRAPPIST-1 planets. The main one so far is characterizing and correcting for the effects of stellar contamination. Fortunately, a new wave of observations with the James Webb Space Telescope and near-infrared high-resolution ground-based spectrographs on very large telescopes will bring significant advances in the coming decade.
The nearby TRAPPIST-1 planetary system is an exciting target for characterizing the atmospheres of terrestrial planets. The planets e, f and g lie in the circumstellar habitable zone and could sustain liquid water on their surfaces. During the extended pre-main sequence phase of TRAPPIST-1, however, the planets may have experienced extreme water loss, leading to a desiccated mantle. The presence or absence of an ocean is challenging to determine with current and next generation telescopes. Therefore, we investigate whether indirect evidence of an ocean and/or a biosphere can be inferred from observations of the planetary atmosphere. We introduce a newly developed photochemical model for planetary atmospheres, coupled to a radiative-convective model and validate it against modern Earth, Venus and Mars. The coupled model is applied to the TRAPPIST-1 planets e and f, assuming different surface conditions and varying amounts of CO$_2$ in the atmosphere. As input for the model we use a constructed spectrum of TRAPPIST-1, based on near-simultaneous data from X-ray to optical wavelengths. We compute cloud-free transmission spectra of the planetary atmospheres and determine the detectability of molecular features using the Extremely Large Telescope (ELT) and the James Webb Space Telescope (JWST). We find that under certain conditions, the existence or non-existence of a biosphere and/or an ocean can be inferred by combining 30 transit observations with ELT and JWST within the K-band. A non-detection of CO could suggest the existence of an ocean, whereas significant CH$_4$ hints at the presence of a biosphere.
The TRAPPIST-1 planetary system is an excellent candidate for study of the evolution and habitability of M-dwarf planets. Transmission spectroscopy observations performed with the Hubble Space Telescope (HST) suggest the innermost five planets do not possess clear hydrogen atmospheres. Here we reassess these conclusions with recently updated mass constraints and expand the analysis to include limits on metallicity, cloud top pressure, and the strength of haze scattering. We connect recent laboratory results of particle size and production rate for exoplanet hazes to a one-dimensional atmospheric model for TRAPPIST-1 transmission spectra. Doing so, we obtain a physically-based estimate of haze scattering cross sections. We find haze scattering cross sections on the order of 1e-26 to 1e-19 cm squared are needed in hydrogen-rich atmospheres for TRAPPIST-1 d, e, and f to match the HST data. For TRAPPIST-1 g, we cannot rule out a clear hydrogen-rich atmosphere. We also modeled the effects an opaque cloud deck and substantial heavy element content have on the transmission spectra. We determine that hydrogen-rich atmospheres with high altitude clouds, at pressures of 12mbar and lower, are consistent with the HST observations for TRAPPIST-1 d and e. For TRAPPIST-1 f and g, we cannot rule out clear hydrogen-rich cases to high confidence. We demonstrate that metallicities of at least 60xsolar with tropospheric (0.1 bar) clouds agree with observations. Additionally, we provide estimates of the precision necessary for future observations to disentangle degeneracies in cloud top pressure and metallicity. Our results suggest secondary, volatile-rich atmospheres for the outer TRAPPIST-1 planets d, e, and f.