No Arabic abstract
Fast reactions to changes in the surrounding visual environment require efficient attention mechanisms to reallocate computational resources to most relevant locations in the visual field. While current computational models keep improving their predictive ability thanks to the increasing availability of data, they still struggle approximating the effectiveness and efficiency exhibited by foveated animals. In this paper, we present a biologically-plausible computational model of focus of attention that exhibits spatiotemporal locality and that is very well-suited for parallel and distributed implementations. Attention emerges as a wave propagation process originated by visual stimuli corresponding to details and motion information. The resulting field obeys the principle of inhibition of return so as not to get stuck in potential holes. An accurate experimentation of the model shows that it achieves top level performance in scanpath prediction tasks. This can easily be understood at the light of a theoretical result that we establish in the paper, where we prove that as the velocity of wave propagation goes to infinity, the proposed model reduces to recently proposed state of the art gravitational models of focus of attention.
Visual emotion analysis (VEA) has attracted great attention recently, due to the increasing tendency of expressing and understanding emotions through images on social networks. Different from traditional vision tasks, VEA is inherently more challenging since it involves a much higher level of complexity and ambiguity in human cognitive process. Most of the existing methods adopt deep learning techniques to extract general features from the whole image, disregarding the specific features evoked by various emotional stimuli. Inspired by the textit{Stimuli-Organism-Response (S-O-R)} emotion model in psychological theory, we proposed a stimuli-aware VEA method consisting of three stages, namely stimuli selection (S), feature extraction (O) and emotion prediction (R). First, specific emotional stimuli (i.e., color, object, face) are selected from images by employing the off-the-shelf tools. To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network. Then, we design three specific networks, i.e., Global-Net, Semantic-Net and Expression-Net, to extract distinct emotional features from different stimuli simultaneously. Finally, benefiting from the inherent structure of Mikels wheel, we design a novel hierarchical cross-entropy loss to distinguish hard false examples from easy ones in an emotion-specific manner. Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets. Ablation study and visualizations further prove the validity and interpretability of our method.
We present a method to stop the evaluation of a prediction process when the result of the full evaluation is obvious. This trait is highly desirable in prediction tasks where a predictor evaluates all its features for every example in large datasets. We observe that some examples are easier to classify than others, a phenomenon which is characterized by the event when most of the features agree on the class of an example. By stopping the feature evaluation when encountering an easy- to-classify example, the predictor can achieve substantial gains in computation. Our method provides a natural attention mechanism for linear predictors where the predictor concentrates most of its computation on hard-to-classify examples and quickly discards easy-to-classify ones. By modifying a linear prediction algorithm such as an SVM or AdaBoost to include our attentive method we prove that the average number of features computed is O(sqrt(n log 1/sqrt(delta))) where n is the original number of features, and delta is the error rate incurred due to early stopping. We demonstrate the effectiveness of Attentive Prediction on MNIST, Real-sim, Gisette, and synthetic datasets.
The capacity to filter out irrelevant information from our environment is critical to efficient processing. Yet, during development, when building a knowledge base of the world is occurring, the ability to selectively allocate attentional resources is limited (e.g., Amso & Scerif, 2015). In adulthood, research has demonstrated that surrounding the spatial location of attentional focus is a suppressive field, resulting from top-down attention promoting the processing of relevant stimuli and inhibiting surrounding distractors (e.g., Hopf et al., 2006). It is not fully known, however, whether this phenomenon manifests in development. In the current study, we examined whether spatial suppression surrounding the focus of visual attention is exhibited in developmental age groups. Participants between 12 and 27 years of age exhibited spatial suppression surrounding their focus of visual attention. Their accuracy increased as a function of the separation distance between a spatially cued (and attended) target and a second target, suggesting that a ring of suppression surrounded the attended target. When a central cue was instead presented and therefore attention was no longer spatially cued, surround suppression was not observed, indicating that our initial findings of suppression were indeed related to the focus of attention. Attentional surround suppression was not observed in 8- to 11-years-olds, even with a longer spatial cue presentation time, demonstrating that the lack of the effect at these ages is not due to slowed attentional feedback processes. Our findings demonstrate that top-down attentional processes are still immature until approximately 12 years of age, and that they continue to be refined throughout adolescence, converging well with previous research on attentional development.
Visual dialog is a challenging vision-language task, which requires the agent to answer multi-round questions about an image. It typically needs to address two major problems: (1) How to answer visually-grounded questions, which is the core challenge in visual question answering (VQA); (2) How to infer the co-reference between questions and the dialog history. An example of visual co-reference is: pronouns (eg, ``they) in the question (eg, ``Are they on or off?) are linked with nouns (eg, ``lamps) appearing in the dialog history (eg, ``How many lamps are there?) and the object grounded in the image. In this work, to resolve the visual co-reference for visual dialog, we propose a novel attention mechanism called Recursive Visual Attention (RvA). Specifically, our dialog agent browses the dialog history until the agent has sufficient confidence in the visual co-reference resolution, and refines the visual attention recursively. The quantitative and qualitative experimental results on the large-scale VisDial v0.9 and v1.0 datasets demonstrate that the proposed RvA not only outperforms the state-of-the-art methods, but also achieves reasonable recursion and interpretable attention maps without additional annotations. The code is available at url{https://github.com/yuleiniu/rva}.
The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual input. In this paper we propose a novel and generally applicable form of attention mechanism that learns high-order correlations between various data modalities. We show that high-order correlations effectively direct the appropriate attention to the relevant elements in the different data modalities that are required to solve the joint task. We demonstrate the effectiveness of our high-order attention mechanism on the task of visual question answering (VQA), where we achieve state-of-the-art performance on the standard VQA dataset.