Do you want to publish a course? Click here

Pure point spectrum for dynamical systems and mean almost periodicity

159   0   0.0 ( 0 )
 Added by Nicolae Strungaru
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider metrizable ergodic topological dynamical systems over locally compact, $sigma$-compact abelian groups. We study pure point spectrum via suitable notions of almost periodicity for the points of the dynamical system. More specifically, we characterize pure point spectrum via mean almost periodicity of generic points. We then go on and show how Besicovitch almost periodic points determine both eigenfunctions and the measure in this case. After this, we characterize those systems arising from Weyl almost periodic points and use this to characterize weak and Bohr almost periodic systems. Finally, we consider applications to aperiodic order.



rate research

Read More

We show that a translation bounded measure has pure point diffraction if and only if it is mean almost periodic. We then go on and show that a translation bounded measure solves what we call the phase problem if and only if it is Besicovitch almost periodic. Finally, we show that a translation bounded measure solves the phase problem independent of the underlying van Hove sequence if and only if it is Weyl almost periodic. These results solve fundamental issues in the theory of pure point diffraction and answer questions of Lagarias.
228 - Michael Baake 2010
We examine the diffraction properties of lattice dynamical systems of algebraic origin. It is well-known that diverse dynamical properties occur within this class. These include different orders of mixing (or higher-order correlations), the presence or absence of measure rigidity (restrictions on the set of possible shift-invariant ergodic measures to being those of algebraic origin), and different entropy ranks (which may be viewed as the maximal spatial dimension in which the system resembles an i.i.d. process). Despite these differences, it is shown that the resulting diffraction spectra are essentially indistinguishable, thus raising further difficulties for the inverse problem of structure determination from diffraction spectra. Some of them may be resolved on the level of higher-order correlation functions, which we also briefly compare.
245 - Bixiang Wang 2014
In this paper, we introduce concepts of pathwise random almost periodic and almost automorphic solutions for dynamical systems generated by non-autonomous stochastic equations. These solutions are pathwise stochastic analogues of deterministic dynamical systems. The existence and bifurcation of random periodic (random almost periodic, random almost automorphic) solutions have been established for a one-dimensional stochastic equation with multiplicative noise.
We investigate Weierstrass functions with roughness parameter $gamma$ that are Holder continuous with coefficient $H={loggamma}/{log frac12}.$ Analytical access is provided by an embedding into a dynamical system related to the baker transform where the graphs of the functions are identified as their global attractors. They possess stable manifolds hosting Sinai-Bowen-Ruelle (SBR) measures. We systematically exploit a telescoping property of associated measures to give an alternative proof of the absolute continuity of the SBR measure for large enough $gamma$ with square-integrable density. Telescoping allows a macroscopic argument using the transversality of the flow related to the mapping describing the stable manifold. The smoothness of the SBR measure can be used to compute the Hausdorff dimension of the graphs of the original Weierstrass functions and investigate their local times.
The aim of this article is to obtain a better understanding and classification of strictly ergodic topological dynamical systems with discrete spectrum. To that end, we first determine when an isomorphic maximal equicontinuous factor map of a minimal topological dynamical system has trivial (one point) fibres. In other words, we characterize when minimal mean equicontinuous systems are almost automorphic. Furthermore, we investigate another natural subclass of mean equicontinuous systems, so-called diam-mean equicontinuous systems, and show that a minimal system is diam-mean equicontinuous if and only if the maximal equicontinuous factor is regular (the points with trivial fibres have full Haar measure). Combined with previous results in the field, this provides a natural characterization for every step of a natural hierarchy for strictly ergodic topological models of ergodic systems with discrete spectrum. We also construct an example of a transitive almost diam-mean equicontinuous system with positive topological entropy, and we give a partial answer to a question of Furstenberg related to multiple recurrence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا