Do you want to publish a course? Click here

Numerical Investigation of Light Emission from Quantum Dots Embedded into On-Chip, Low Index Contrast Optical Waveguides

72   0   0.0 ( 0 )
 Added by Sven Burger
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single-photon emitters integrated into quantum optical circuits will enable new, miniaturized quantum optical devices. Here, we numerically investigate semiconductor quantum dots embedded to low refractive index contrast waveguides. We discuss a model to compute the coupling efficiency of the emitted light field to the fundamental propagation mode of the waveguide, and we optimize the waveguide dimensional parameters for maximum coupling efficiency. Further, we show that for a laterally cropped waveguide the interplay of Purcell-enhancement and optimized field profile can enhance the coupling efficiency by a factor of about two.



rate research

Read More

We report a study of the quantum dot emission in short photonic crystal waveguides. We observe that the quantum dot photoluminescence intensity and decay rate are strongly enhanced when the emission energy is in resonance with Fabry-Perot cavity modes in the slow-light regime of the dispersion curve. The experimental results are in agreement with previous theoretical predictions and further supported by three-dimensional finite element simulation. Our results show that the combination of slow group velocity and Fabry-Perot cavity resonance provides an avenue to efficiently channel photons from quantum dots into waveguides for integrated quantum photonic applications.
We report on experiments with deformed polymer microlasers that have a low refractive index and exhibit unidirectional light emission. We demonstrate that the highly directional emission is due to transport of light rays along the unstable manifold of the chaotic saddle in phase space. Experiments, ray-tracing simulations, and mode calculations show very good agreement.
One important building block for future integrated nanophotonic devices is the scalable on-chip interfacing of single photon emitters and quantum memories with single optical modes. Here we present the deterministic integration of a single solid-state qubit, the nitrogen-vacancy (NV) center, with a photonic platform consisting exclusively of SiO$_2$ grown thermally on a Si substrate. The platform stands out by its ultra-low fluorescence and the ability to produce various passive structures such as high-Q microresonators and mode-size converters. By numerical analysis an optimal structure for the efficient coupling of a dipole emitter to the guided mode could be determined. Experimentally, the integration of a preselected NV emitter was performed with an atomic force microscope and the on-chip excitation of the quantum emitter as well as the coupling of single photons to the guided mode of the integrated structure could be demonstrated. Our approach shows the potential of this platform as a robust nanoscale interface of on-chip photonic structures with solid-state qubits.
124 - Chen Fang , Junze Li , Boxuan Zhou 2021
The detection of polarization states of light is essential in photonic and optoelectronic devices. Currently, the polarimeters are usually constructed with the help of waveplates or a comprehensive metasurface, which will inevitably increase the fabrication complexity and unnecessary energy loss. Here, we have successfully demonstrated a self-powered filterless on-chip full-Stokes polarimeter based on a single-layer MoS2/few-layer MoS2 homojunction. Combining the built-in electric field enhanced circular photogalvanic effect with the intrinsic optical anisotropy of MoS2 between in-plane and out-of-plane direction, the device is able to conveniently sense four Stokes parameters of incident light at zero bias without requiring an extra filtering layer, and can function in the wavelength range of 650-690 nm with acceptable average errors. Besides, this homojunction device is easy to integrate with silicon-based chips and could have much smaller sizes than metasurface based polarimeters. Our study thus provides an excellent paradigm for high-performance on-chip filterless polarimeters.
117 - F. P. Mezzapesa 2020
The ability to engineer quantum-cascade-lasers (QCLs) with ultrabroad gain spectra and with a full compensation of the group velocity dispersion, at Terahertz (THz) frequencies, is a fundamental need for devising monolithic and miniaturized optical frequency-comb-synthesizers (FCS) in the far-infrared. In a THz QCL four-wave mixing, driven by the intrinsic third-order susceptibility of the intersubband gain medium, self-lock the optical modes in phase, allowing stable comb operation, albeit over a restricted dynamic range (~ 20% of the laser operational range). Here, we engineer miniaturized THz FCSs comprising a heterogeneous THz QCL integrated with a tightly-coupled on-chip solution-processed graphene saturable-absorber reflector that preserves phase-coherence between lasing modes even when four-wave mixing no longer provides dispersion compensation. This enables a high-power (8 mW) FCS with over 90 optical modes to be demonstrated, over more than 55% of the laser operational range. Furthermore, stable injection-locking is showed, paving the way to impact a number of key applications, including high-precision tuneable broadband-spectroscopy and quantum-metrology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا