Do you want to publish a course? Click here

Smoothing effects and infinite time blowup for reaction-diffusion equations: an approach via Sobolev and Poincare inequalities

82   0   0.0 ( 0 )
 Added by Gabriele Grillo
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider reaction-diffusion equations either posed on Riemannian manifolds or in the Euclidean weighted setting, with pow-er-type nonlinearity and slow diffusion of porous medium time. We consider the particularly delicate case $p<m$ in problem (1.1), a case largely left open in [21] even when the initial datum is smooth and compactly supported. We prove global existence for L$^m$ data, and a smoothing effect for the evolution, i.e. that solutions corresponding to such data are bounded at all positive times with a quantitative bound on their L$^infty$ norm. As a consequence of this fact and of a result of [21], it follows that on Cartan-Hadamard manifolds with curvature pinched between two strictly negative constants, solutions corresponding to sufficiently large L$^m$ data give rise to solutions that blow up pointwise everywhere in infinite time, a fact that has no Euclidean analogue. The methods of proof of the smoothing effect are functional analytic in character, as they depend solely on the validity of the Sobolev inequality and on the fact that the L$^2$ spectrum of $Delta$ on $M$ is bounded away from zero (namely on the validity of a Poincar{e} inequality on $M$). As such, they are applicable to different situations, among which we single out the case of (mass) weighted reaction-diffusion equation in the Euclidean setting. In this latter setting, a modification of the methods of [37] allows to deal also, with stronger results for large times, with the case of globally integrable weights.



rate research

Read More

We consider the porous medium equation with a power-like reaction term, posed on Riemannian manifolds. Under certain assumptions on $p$ and $m$ in (1.1), and for small enough nonnegative initial data, we prove existence of global in time solutions, provided that the Sobolev inequality holds on the manifold. Furthermore, when both the Sobolev and the Poincare inequality hold, similar results hold under weaker assumptions on the forcing term. By the same functional analytic methods, we investigate global existence for solutions to the porous medium equation with source term and variable density in ${mathbb R}^n$.
284 - Qiaohua Yang 2019
Motivated by a recent work of Ache and Chang concerning the sharp Sobolev trace inequality and Lebedev-Milin inequalities of order four on the Euclidean unit ball, we derive such inequalities on the Euclidean unit ball for higher order derivatives. By using, among other things, the scattering theory on hyperbolic spaces and the generalized Poisson kernel, we obtain the explicit formulas of extremal functions of such inequations. Moreover, we also derive the sharp trace Sobolev inequalities on half spaces for higher order derivatives. Finally, we compute the explicit formulas of adapted metric, introduced by Case and Chang, on the Euclidean unit ball, which is of independent interest.
We study weighted Poincare and Poincare-Sobolev type inequalities with an explicit analysis on the dependence on the $A_p$ constants of the involved weights. We obtain inequalities of the form $$ left (frac{1}{w(Q)}int_Q|f-f_Q|^{q}wright )^frac{1}{q}le C_well(Q)left (frac{1}{w(Q)}int_Q | abla f|^p wright )^frac{1}{p}, $$ with different quantitative estimates for both the exponent $q$ and the constant $C_w$. We will derive those estimates together with a large variety of related results as a consequence of a general selfimproving property shared by functions satisfying the inequality $$ frac{1}{|Q|}int_Q |f-f_Q| dmu le a(Q), $$ for all cubes $Qsubsetmathbb{R}^n$ and where $a$ is some functional that obeys a specific discrete geometrical summability condition. We introduce a Sobolev-type exponent $p^*_w>p$ associated to the weight $w$ and obtain further improvements involving $L^{p^*_w}$ norms on the left hand side of the inequality above. For the endpoint case of $A_1$ weights we reach the classical critical Sobolev exponent $p^*=frac{pn}{n-p}$ which is the largest possible and provide different type of quantitative estimates for $C_w$. We also show that this best possible estimate cannot hold with an exponent on the $A_1$ constant smaller than $1/p$. We also provide an argument based on extrapolation ideas showing that there is no $(p,p)$, $pgeq1$, Poincare inequality valid for the whole class of $RH_infty$ weights by showing their intimate connection with the failure of Poincare inequalities, $(p,p)$ in the range $0<p<1$.
We give some a priori estimates of type sup*inf for Yamabe and prescribed scalar curvature type equations on Riemannian manifolds of dimension >2. The product sup*inf is caracteristic of those equations, like the usual Harnack inequalities for non negative harmonic functions. First, we have a lower bound for sup*inf for some classes of PDE on compact manifolds (like prescribed scalar cuvature). We also have an upper bound for the same product but on any Riemannian manifold not necessarily compact. An application of those result is an uniqueness solution for some PDE.
The dual purpose of this article is to establish bilinear Poincare-type estimates associated to an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their applications to Leibniz-type rules in Sobolev and Campanato-Morrey spaces under Sobolev scaling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا