Do you want to publish a course? Click here

Approaching Prosumer Social Optimum via Energy Sharing with Proof of Convergence

76   0   0.0 ( 0 )
 Added by Yue Chen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

With the advent of prosumers, the traditional centralized operation may become impracticable due to computational burden, privacy concerns, and conflicting interests. In this paper, an energy sharing mechanism is proposed to accommodate prosumers strategic decision-making on their self-production and demand in the presence of capacity constraints. Under this setting, prosumers play a generalized Nash game. We prove main properties of the game: an equilibrium exists and is partially unique; no prosumer is worse off by energy sharing and the price-of-anarchy is 1-O(1/I) where I is the number of prosumers. In particular, the PoA tends to 1 with a growing number of prosumers, meaning that the resulting total cost under the proposed energy sharing approaches social optimum. We prove that the corresponding prosumers strategies converge to the social optimal solution as well. Finally we propose a bidding process and prove that it converges to the energy sharing equilibrium under mild conditions. Illustrative examples are provided to validate the results.

rate research

Read More

We provide an approach to maximal monotone bifunctions based on the theory of representative functions. Thus we extend to nonreflexive Banach spaces recent results due to A.N. Iusem and, respectively, N. Hadjisavvas and H. Khatibzadeh, where sufficient conditions guaranteeing the maximal monotonicity of bifunctions were introduced. New results involving the sum of two monotone bifunctions are also presented.
This paper proposes a novel energy sharing mechanism for prosumers who can produce and consume. Different from most existing works, the role of individual prosumer as a seller or buyer in our model is endogenously determined. Several desirable properties of the proposed mechanism are proved based on a generalized game-theoretic model. We show that the Nash equilibrium exists and is the unique solution of an equivalent convex optimization problem. The sharing price at the Nash equilibrium equals to the average marginal disutility of all prosumers. We also prove that every prosumer has the incentive to participate in the sharing market, and prosumers total cost decreases with increasing absolute value of price sensitivity. Furthermore, the Nash equilibrium approaches the social optimal as the number of prosumers grows, and competition can improve social welfare.
A protocol for distributed estimation of discrete distributions is proposed. Each agent begins with a single sample from the distribution, and the goal is to learn the empirical distribution of the samples. The protocol is based on a simple message-passing model motivated by communication in social networks. Agents sample a message randomly from their current estimates of the distribution, resulting in a protocol with quantized messages. Using tools from stochastic approximation, the algorithm is shown to converge almost surely. Examples illustrate three regimes with different consensus phenomena. Simulations demonstrate this convergence and give some insight into the effect of network topology.
58 - Yue Chen , Shengwei Mei , Wei Wei 2019
The advent of intelligent agents who produce and consume energy by themselves has led the smart grid into the era of prosumer, offering the energy system and customers a unique opportunity to revaluate/trade their spot energy via a sharing initiative. To this end, designing an appropriate sharing mechanism is an issue with crucial importance and has captured great attention. This paper addresses the prosumers demand response problem via energy sharing. Under a general supply-demand function bidding scheme, a sharing market clearing procedure considering network constraints is proposed, which gives rise to a generalized Nash game. The existence and uniqueness of market equilibrium are proved in non-congested cases. When congestion occurs, infinitely much equilibrium may exist because the strategy spaces of prosumers are correlated. A price-regulation procedure is introduced in the sharing mechanism, which outcomes a unique equilibrium that is fair to all participants. Properties of the improved sharing mechanism, including the individual rational behaviors of prosumers and the components of sharing price, are revealed. When the number of prosumers increases, the proposed sharing mechanism approaches social optimum. Even with fixed number of resources, introducing competition can result in a decreasing social cost. Illustrative examples validate the theoretical results and provide more insights for the energy sharing research.
142 - Yue Chen , Wei Wei , Mingxuan Li 2021
Flexible load at the demand-side has been regarded as an effective measure to cope with volatile distributed renewable generations. To unlock the demand-side flexibility, this paper proposes a peer-to-peer energy sharing mechanism that facilitates energy exchange among users while preserving privacy. We prove the existence and partial uniqueness of the energy sharing market equilibrium and provide a centralized optimization to obtain the equilibrium. The centralized optimization is further linearized by a convex combination approach, turning into a multi-parametric linear program (MP-LP) with renewable output deviations being the parameters. The flexibility requirement of individual users is calculated based on this MP-LP. To be specific, an adaptive vertex generation algorithm is established to construct a piecewise linear estimator of the optimal total cost subject to a given error tolerance. Critical regions and optimal strategies are retrieved from the obtained approximate cost function to evaluate the flexibility requirement. The proposed algorithm does not rely on the exact characterization of optimal basis invariant sets and thus is not influenced by model degeneracy, a common difficulty faced by existing approaches. Case studies validate the theoretical results and show that the proposed method is scalable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا