Do you want to publish a course? Click here

Distributed Learning of Distributions via Social Sampling

160   0   0.0 ( 0 )
 Added by Anand Sarwate
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

A protocol for distributed estimation of discrete distributions is proposed. Each agent begins with a single sample from the distribution, and the goal is to learn the empirical distribution of the samples. The protocol is based on a simple message-passing model motivated by communication in social networks. Agents sample a message randomly from their current estimates of the distribution, resulting in a protocol with quantized messages. Using tools from stochastic approximation, the algorithm is shown to converge almost surely. Examples illustrate three regimes with different consensus phenomena. Simulations demonstrate this convergence and give some insight into the effect of network topology.



rate research

Read More

176 - Qipeng Liu , Jiuhua Zhao , 2014
In this paper, we discuss a class of distributed detection algorithms which can be viewed as implementations of Bayes law in distributed settings. Some of the algorithms are proposed in the literature most recently, and others are first developed in this paper. The common feature of these algorithms is that they all combine (i) certain kinds of consensus protocols with (ii) Bayesian updates. They are different mainly in the aspect of the type of consensus protocol and the order of the two operations. After discussing their similarities and differences, we compare these distributed algorithms by numerical examples. We focus on the rate at which these algorithms detect the underlying true state of an object. We find that (a) The algorithms with consensus via geometric average is more efficient than that via arithmetic average; (b) The order of consensus aggregation and Bayesian update does not apparently influence the performance of the algorithms; (c) The existence of communication delay dramatically slows down the rate of convergence; (d) More communication between agents with different signal structures improves the rate of convergence.
In this paper, we consider the problem of optimally coordinating the response of a group of distributed energy resources (DERs) so they collectively meet the electric power demanded by a collection of loads, while minimizing the total generation cost and respecting the DER capacity limits. This problem can be cast as a convex optimization problem, where the global objective is to minimize a sum of convex functions corresponding to individual DER generation cost, while satisfying (i) linear inequality constraints corresponding to the DER capacity limits and (ii) a linear equality constraint corresponding to the total power generated by the DERs being equal to the total power demand. We develop distributed algorithms to solve the DER coordination problem over time-varying communication networks with either bidirectional or unidirectional communication links. The proposed algorithms can be seen as distribute
101 - Marie Maros , Joakim Jalden 2016
This paper shows the capability the alternating direction method of multipliers (ADMM) has to track, in a distributed manner, the optimal down-link beam-forming solution in a multiple input multiple output (MISO) multi-cell network given a dynamic channel. Each time the channel changes, ADMM is allowed to perform one algorithm iteration. In order to implement the proposed scheme, the base stations are not required to exchange channel state information (CSI), but will require to exchange interference values once. We show ADMMs tracking ability in terms of the algorithms Lyapunov function given that the primal and dual solutions to the convex optimization problem at hand can be understood as a continuous mapping from the problems parameters. We show that this holds true even considering that the problem looses strong convexity when it is made distributed. We then show that these requirements hold for the down-link, and consequently up-link, beam-forming case. Numerical examples corroborating the theoretical findings are also provided.
Within the model of social dynamics determined by collective decisions in a stochastic environment (ViSE model), we consider the case of a homogeneous society consisting of classically rational economic agents (or homines economici, or egoists). We present expressions for the optimal majority threshold and the maximum expected capital increment as functions of the parameters of the environment. An estimate of the rate of change of the optimal threshold at zero is given, which is an absolute constant: $(sqrt{2/pi}-sqrt{pi/2})/2$.
This paper addresses the robust consensus problem under switching topologies. Contrary to existing methods, the proposed approach provides decentralized protocols that achieve consensus for networked multi-agent systems in a predefined time. Namely, the protocol design provides a tuning parameter that allows setting the convergence time of the agents to a consensus state. An appropriate Lyapunov analysis exposes the capability of the current proposal to achieve predefined-time consensus over switching topologies despite the presence of bounded perturbations. Finally, the paper presents a comparison showing that the suggested approach subsumes existing fixed-time consensus algorithms and provides extra degrees of freedom to obtain predefined-time consensus protocols that are less over-engineered, i.e., the difference between the estimated convergence time and its actual value is lower in our approach. Numerical results are given to illustrate the effectiveness and advantages of the proposed approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا