Do you want to publish a course? Click here

Turning point principle for relativistic stars

98   0   0.0 ( 0 )
 Added by Mahir Hadzic
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Upon specifying an equation of state, spherically symmetric steady states of the Einstein-Euler system are embedded in 1-parameter families of solutions, characterized by the value of their central redshift. In the 1960s Zeldovich [50] and Wheeler [22] formulated a turning point principle which states that the spectral stability can be exchanged to instability and vice versa only at the extrema of mass along the mass-radius curve. Moreover the bending orientation at the extrema determines whether a growing mode is gained or lost. We prove the turning point principle and provide a detailed description of the linearized dynamics. One of the corollaries of our result is that the number of growing modes grows to infinity as the central redshift increases to infinity.



rate research

Read More

We prove that a solution of the Schrodinger-type equation $mathrm{i}partial_t u= Hu$, where $H$ is a Jacobi operator with asymptotically constant coefficients, cannot decay too fast at two different times unless it is trivial.
240 - Zhiwu Lin , Chongchun Zeng 2020
We consider stability of non-rotating gaseous stars modeled by the Euler-Poisson system. Under general assumptions on the equation of states, we proved a turning point principle (TPP) that the stability of the stars is entirely determined by the mass-radius curve parameterized by the center density. In particular, the stability can only change at extrema (i.e. local maximum or minimum points) of the total mass. For very general equation of states, TPP implies that for increasing center density the stars are stable up to the first mass maximum and unstable beyond this point until next mass extremum (a minimum). Moreover, we get a precise counting of unstable modes and exponential trichotomy estimates for the linearized Euler-Poisson system. To prove these results, we develop a general framework of separable Hamiltonian PDEs. The general approach is flexible and can be used for many other problems including stability of rotating and magnetic stars, relativistic stars and galaxies.
We prove the existence of ground states for the semi-relativistic Schrodinger-Poisson-Slater energy $$I^{alpha,beta}(rho)=inf_{substack{uin H^frac 12(R^3) int_{R^3}|u|^2 dx=rho}} frac{1}{2}|u|^2_{H^frac 12(R^3)} +alphaintint_{R^{3}timesR^{3}} frac{| u(x)|^{2}|u(y)|^2}{|x-y|}dxdy-betaint_{R^{3}}|u|^{frac{8}{3}}dx$$ $alpha,beta>0$ and $rho>0$ is small enough. The minimization problem is $L^2$ critical and in order to characterize of the values $alpha, beta>0$ such that $I^{alpha, beta}(rho)>-infty$ for every $rho>0$, we prove a new lower bound on the Coulomb energy involving the kinetic energy and the exchange energy. We prove the existence of a constant $S>0$ such that $$frac{1}{S}frac{|varphi|_{L^frac 83(R^3)}}{|varphi|_{dot H^frac 12(R^3)}^frac 12}leq left (intint_{R^3times R^3} frac{|varphi(x)|^2|varphi(y)|^2}{|x-y|}dxdyright)^frac 18 $$ for all $varphiin C^infty_0(R^3)$. Eventually we show that similar compactness property fails provided that in the energy above we replace the inhomogeneous Sobolev norm $|u|^2_{H^frac 12(R^3)}$ by the homogeneous one $|u|_{dot H^frac 12(R^3)}$.
We obtain new Faber-Krahn-type inequalities for certain perturbations of the Dirichlet Laplacian on a bounded domain. First, we establish a two- and three-dimensional Faber-Krahn inequality for the Schrodinger operator with point interaction: the optimiser is the ball with the point interaction supported at its centre. Next, we establish three-dimensional Faber-Krahn inequalities for one- and two-body Schrodinger operator with attractive Coulomb interactions, the optimiser being given in terms of Coulomb attraction at the centre of the ball. The proofs of such results are based on symmetric decreasing rearrangement and Steiner rearrangement techniques; in the first model a careful analysis of certain monotonicity properties of the lowest eigenvalue is also needed.
We consider a way of defining quantum Hamiltonians involving particle creation and annihilation based on an interior-boundary condition (IBC) on the wave function, where the wave function is the particle-position representation of a vector in Fock space, and the IBC relates (essentially) the values of the wave function at any two configurations that differ only by the creation of a particle. Here we prove, for a model of particle creation at one or more point sources using the Laplace operator as the free Hamiltonian, that a Hamiltonian can indeed be rigorously defined in this way without the need for any ultraviolet regularization, and that it is self-adjoint. We prove further that introducing an ultraviolet cut-off (thus smearing out particles over a positive radius) and applying a certain known renormalization procedure (taking the limit of removing the cut-off while subtracting a constant that tends to infinity) yields, up to addition of a finite constant, the Hamiltonian defined by the IBC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا