We study whether it is possible to infer if a news headline is true or false using only the movement of the human eyes when reading news headlines. Our study with 55 participants who are eye-tracked when reading 108 news headlines (72 true, 36 false) shows that false headlines receive statistically significantly less visual attention than true headlines. We further build an ensemble learner that predicts news headline factuality using only eye-tracking measurements. Our model yields a mean AUC of 0.688 and is better at detecting false than true headlines. Through a model analysis, we find that eye-tracking 25 users when reading 3-6 headlines is sufficient for our ensemble learner.
People are increasingly consuming news curated by machine learning (ML) systems. Motivated by studies on algorithmic bias, this paper explores which recommendations of an algorithmic news curation system users trust and how this trust is affected by untrustworthy news stories like fake news. In a study with 82 vocational school students with a background in IT, we found that users are able to provide trust ratings that distinguish trustworthy recommendations of quality news stories from untrustworthy recommendations. However, a single untrustworthy news story combined with four trustworthy news stories is rated similarly as five trustworthy news stories. The results could be a first indication that untrustworthy news stories benefit from appearing in a trustworthy context. The results also show the limitations of users abilities to rate the recommendations of a news curation system. We discuss the implications of this for the user experience of interactive machine learning systems.
We present an algorithmic and visual grouping of participants and eye-tracking metrics derived from recorded eye-tracking data. Our method utilizes two well-established visualization concepts. First, parallel coordinates are used to provide an overview of the used metrics, their interactions, and similarities, which helps select suitable metrics that describe characteristics of the eye-tracking data. Furthermore, parallel coordinates plots enable an analyst to test the effects of creating a combination of a subset of metrics resulting in a newly derived eye-tracking metric. Second, a similarity matrix visualization is used to visually represent the affine combination of metrics utilizing an algorithmic grouping of subjects that leads to distinct visual groups of similar behavior. To keep the diagrams of the matrix visualization simple and understandable, we visually encode our eye-tracking data into the cells of a similarity matrix of participants. The algorithmic grouping is performed with a clustering based on the affine combination of metrics, which is also the basis for the similarity value computation of the similarity matrix. To illustrate the usefulness of our visualization, we applied it to an eye-tracking data set involving the reading behavior of metro maps of up to 40 participants. Finally, we discuss limitations and scalability issues of the approach focusing on visual and perceptual issues.
By collecting the data of eyeball movement of pilots, it is possible to monitor pilots operation in the future flight in order to detect potential accidents. In this paper, we designed a novel SVS system that is integrated with an eye tracking device, and is able to achieve the following functions:1) A novel method that is able to learn from the eyeball movements of pilots and preload or render the terrain data in various resolutions, in order to improve the quality of terrain display by comprehending the interested regions of the pilot. 2) A warning mechanism that may detect the risky operation via analyzing the aviation information from the SVS and the eyeball movement from the eye tracking device, in order to prevent the maloperations or human factor accidents. The user study and experiments show that the proposed SVS-Eyetracking system works efficiently and is capable of avoiding potential risked caused by fatigue in the flight simulation.
We propose a novel framework for predicting the factuality of reporting of news media outlets by studying the user attention cycles in their YouTube channels. In particular, we design a rich set of features derived from the temporal evolution of the number of views, likes, dislikes, and comments for a video, which we then aggregate to the channel level. We develop and release a dataset for the task, containing observations of user attention on YouTube channels for 489 news media. Our experiments demonstrate both complementarity and sizable improvements over state-of-the-art textual representations.
Emotion stimulus extraction is a fine-grained subtask of emotion analysis that focuses on identifying the description of the cause behind an emotion expression from a text passage (e.g., in the sentence I am happy that I passed my exam the phrase passed my exam corresponds to the stimulus.). Previous work mainly focused on Mandarin and English, with no resources or models for German. We fill this research gap by developing a corpus of 2006 German news headlines annotated with emotions and 811 instances with annotations of stimulus phrases. Given that such corpus creation efforts are time-consuming and expensive, we additionally work on an approach for projecting the existing English GoodNewsEveryone (GNE) corpus to a machine-translated German version. We compare the performance of a conditional random field (CRF) model (trained monolingually on German and cross-lingually via projection) with a multilingual XLM-RoBERTa (XLM-R) model. Our results show that training with the German corpus achieves higher F1 scores than projection. Experiments with XLM-R outperform their respective CRF counterparts.