No Arabic abstract
People are increasingly consuming news curated by machine learning (ML) systems. Motivated by studies on algorithmic bias, this paper explores which recommendations of an algorithmic news curation system users trust and how this trust is affected by untrustworthy news stories like fake news. In a study with 82 vocational school students with a background in IT, we found that users are able to provide trust ratings that distinguish trustworthy recommendations of quality news stories from untrustworthy recommendations. However, a single untrustworthy news story combined with four trustworthy news stories is rated similarly as five trustworthy news stories. The results could be a first indication that untrustworthy news stories benefit from appearing in a trustworthy context. The results also show the limitations of users abilities to rate the recommendations of a news curation system. We discuss the implications of this for the user experience of interactive machine learning systems.
The proliferation of fake news and its propagation on social media has become a major concern due to its ability to create devastating impacts. Different machine learning approaches have been suggested to detect fake news. However, most of those focused on a specific type of news (such as political) which leads us to the question of dataset-bias of the models used. In this research, we conducted a benchmark study to assess the performance of different applicable machine learning approaches on three different datasets where we accumulated the largest and most diversified one. We explored a number of advanced pre-trained language models for fake news detection along with the traditional and deep learning ones and compared their performances from different aspects for the first time to the best of our knowledge. We find that BERT and similar pre-trained models perform the best for fake news detection, especially with very small dataset. Hence, these models are significantly better option for languages with limited electronic contents, i.e., training data. We also carried out several analysis based on the models performance, articles topic, articles length, and discussed different lessons learned from them. We believe that this benchmark study will help the research community to explore further and news sites/blogs to select the most appropriate fake news detection method.
Over the past three years it has become evident that fake news is a danger to democracy. However, until now there has been no clear understanding of how to define fake news, much less how to model it. This paper addresses both these issues. A definition of fake news is given, and two approaches for the modelling of fake news and its impact in elections and referendums are introduced. The first approach, based on the idea of a representative voter, is shown to be suitable to obtain a qualitative understanding of phenomena associated with fake news at a macroscopic level. The second approach, based on the idea of an election microstructure, describes the collective behaviour of the electorate by modelling the preferences of individual voters. It is shown through a simulation study that the mere knowledge that pieces of fake news may be in circulation goes a long way towards mitigating the impact of fake news.
With the rapid evolution of social media, fake news has become a significant social problem, which cannot be addressed in a timely manner using manual investigation. This has motivated numerous studies on automating fake news detection. Most studies explore supervised training models with different modalities (e.g., text, images, and propagation networks) of news records to identify fake news. However, the performance of such techniques generally drops if news records are coming from different domains (e.g., politics, entertainment), especially for domains that are unseen or rarely-seen during training. As motivation, we empirically show that news records from different domains have significantly different word usage and propagation patterns. Furthermore, due to the sheer volume of unlabelled news records, it is challenging to select news records for manual labelling so that the domain-coverage of the labelled dataset is maximized. Hence, this work: (1) proposes a novel framework that jointly preserves domain-specific and cross-domain knowledge in news records to detect fake news from different domains; and (2) introduces an unsupervised technique to select a set of unlabelled informative news records for manual labelling, which can be ultimately used to train a fake news detection model that performs well for many domains while minimizing the labelling cost. Our experiments show that the integration of the proposed fake news model and the selective annotation approach achieves state-of-the-art performance for cross-domain news datasets, while yielding notable improvements for rarely-appearing domains in news datasets.
Automatically identifying fake news from the Internet is a challenging problem in deception detection tasks. Online news is modified constantly during its propagation, e.g., malicious users distort the original truth and make up fake news. However, the continuous evolution process would generate unprecedented fake news and cheat the original model. We present the Fake News Evolution (FNE) dataset: a new dataset tracking the fake news evolution process. Our dataset is composed of 950 paired data, each of which consists of articles representing the three significant phases of the evolution process, which are the truth, the fake news, and the evolved fake news. We observe the features during the evolution and they are the disinformation techniques, text similarity, top 10 keywords, classification accuracy, parts of speech, and sentiment properties.
COVID-19 has impacted all lives. To maintain social distancing and avoiding exposure, works and lives have gradually moved online. Under this trend, social media usage to obtain COVID-19 news has increased. Also, misinformation on COVID-19 is frequently spread on social media. In this work, we develop CHECKED, the first Chinese dataset on COVID-19 misinformation. CHECKED provides a total 2,104 verified microblogs related to COVID-19 from December 2019 to August 2020, identified by using a specific list of keywords. Correspondingly, CHECKED includes 1,868,175 reposts, 1,185,702 comments, and 56,852,736 likes that reveal how these verified microblogs are spread and reacted on Weibo. The dataset contains a rich set of multimedia information for each microblog including ground-truth label, textual, visual, temporal, and network information. Extensive experiments have been conducted to analyze CHECKED data and to provide benchmark results for well-established methods when predicting fake news using CHECKED. We hope that CHECKED can facilitate studies that target misinformation on coronavirus. The dataset is available at https://github.com/cyang03/CHECKED.