Do you want to publish a course? Click here

MetaSDF: Meta-learning Signed Distance Functions

117   0   0.0 ( 0 )
 Added by Vincent Sitzmann
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Neural implicit shape representations are an emerging paradigm that offers many potential benefits over conventional discrete representations, including memory efficiency at a high spatial resolution. Generalizing across shapes with such neural implicit representations amounts to learning priors over the respective function space and enables geometry reconstruction from partial or noisy observations. Existing generalization methods rely on conditioning a neural network on a low-dimensional latent code that is either regressed by an encoder or jointly optimized in the auto-decoder framework. Here, we formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task. We demonstrate that this approach performs on par with auto-decoder based approaches while being an order of magnitude faster at test-time inference. We further demonstrate that the proposed gradient-based method outperforms encoder-decoder based methods that leverage pooling-based set encoders.

rate research

Read More

Multilayer perceptrons (MLPs) have been successfully used to represent 3D shapes implicitly and compactly, by mapping 3D coordinates to the corresponding signed distance values or occupancy values. In this paper, we propose a novel positional encoding scheme, called Spline Positional Encoding, to map the input coordinates to a high dimensional space before passing them to MLPs, for helping to recover 3D signed distance fields with fine-scale geometric details from unorganized 3D point clouds. We verified the superiority of our approach over other positional encoding schemes on tasks of 3D shape reconstruction from input point clouds and shape space learning. The efficacy of our approach extended to image reconstruction is also demonstrated and evaluated.
Recent work has made significant progress on using implicit functions, as a continuous representation for 3D rigid object shape reconstruction. However, much less effort has been devoted to modeling general articulated objects. Compared to rigid objects, articulated objects have higher degrees of freedom, which makes it hard to generalize to unseen shapes. To deal with the large shape variance, we introduce Articulated Signed Distance Functions (A-SDF) to represent articulated shapes with a disentangled latent space, where we have separate codes for encoding shape and articulation. We assume no prior knowledge on part geometry, articulation status, joint type, joint axis, and joint location. With this disentangled continuous representation, we demonstrate that we can control the articulation input and animate unseen instances with unseen joint angles. Furthermore, we propose a Test-Time Adaptation inference algorithm to adjust our model during inference. We demonstrate our model generalize well to out-of-distribution and unseen data, e.g., partial point clouds and real-world depth images.
Research works on the two topics of Semantic Segmentation and SLAM (Simultaneous Localization and Mapping) have been following separate tracks. Here, we link them quite tightly by delineating a category label fusion technique that allows for embedding semantic information into the dense map created by a volume-based SLAM algorithm such as KinectFusion. Accordingly, our approach is the first to provide a semantically labeled dense reconstruction of the environment from a stream of RGB-D images. We validate our proposal using a publicly available semantically annotated RGB-D dataset and a) employing ground truth labels, b) corrupting such annotations with synthetic noise, c) deploying a state of the art semantic segmentation algorithm based on Convolutional Neural Networks.
We propose a differentiable sphere tracing algorithm to bridge the gap between inverse graphics methods and the recently proposed deep learning based implicit signed distance function. Due to the nature of the implicit function, the rendering process requires tremendous function queries, which is particularly problematic when the function is represented as a neural network. We optimize both the forward and backward passes of our rendering layer to make it run efficiently with affordable memory consumption on a commodity graphics card. Our rendering method is fully differentiable such that losses can be directly computed on the rendered 2D observations, and the gradients can be propagated backwards to optimize the 3D geometry. We show that our rendering method can effectively reconstruct accurate 3D shapes from various inputs, such as sparse depth and multi-view images, through inverse optimization. With the geometry based reasoning, our 3D shape prediction methods show excellent generalization capability and robustness against various noises.
Novel view synthesis is a long-standing problem in machine learning and computer vision. Significant progress has recently been made in developing neural scene representations and rendering techniques that synthesize photorealistic images from arbitrary views. These representations, however, are extremely slow to train and often also slow to render. Inspired by neural variants of image-based rendering, we develop a new neural rendering approach with the goal of quickly learning a high-quality representation which can also be rendered in real-time. Our approach, MetaNLR++, accomplishes this by using a unique combination of a neural shape representation and 2D CNN-based image feature extraction, aggregation, and re-projection. To push representation convergence times down to minutes, we leverage meta learning to learn neural shape and image feature priors which accelerate training. The optimized shape and image features can then be extracted using traditional graphics techniques and rendered in real time. We show that MetaNLR++ achieves similar or better novel view synthesis results in a fraction of the time that competing methods require.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا