No Arabic abstract
We analyze a coin-based game with two players where, before starting the game, each player selects a string of length $n$ comprised of coin tosses. They alternate turns, choosing the outcome of a coin toss according to specific rules. As a result, the game is deterministic. The player whose string appears first wins. If neither players string occurs, then the game must be infinite. We study several aspects of this game. We show that if, after $4n-4$ turns, the game fails to cease, it must be infinite. Furthermore, we examine how a player may select their string to force a desired outcome. Finally, we describe the result of the game for particular cases.
A tournament H is quasirandom-forcing if the following holds for every sequence (G_n) of tournaments of growing orders: if the density of H in G_n converges to the expected density of H in a random tournament, then (G_n) is quasirandom. Every transitive tournament with at least 4 vertices is quasirandom-forcing, and Coregliano et al. [Electron. J. Combin. 26 (2019), P1.44] showed that there is also a non-transitive 5-vertex tournament with the property. We show that no additional tournament has this property. This extends the result of Bucic et al. [arXiv:1910.09936] that the non-transitive tournaments with seven or more vertices do not have this property.
Alon and Yuster proved that the number of orientations of any $n$-vertex graph in which every $K_3$ is transitively oriented is at most $2^{lfloor n^2/4rfloor}$ for $n geq 10^4$ and conjectured that the precise lower bound on $n$ should be $n geq 8$. We confirm their conjecture and, additionally, characterize the extremal families by showing that the balanced complete bipartite graph with $n$ vertices is the only $n$-vertex graph for which there are exactly $2^{lfloor n^2/4rfloor}$ such orientations.
A word is square-free if it does not contain any square (a word of the form $XX$), and is extremal square-free if it cannot be extended to a new square-free word by inserting a single letter at any position. Grytczuk, Kordulewski, and Niewiadomski proved that there exist infinitely many ternary extremal square-free words. We establish that there are no extremal square-free words over any alphabet of size at least 17.
Motivated by a biological scenario illustrated in the YouTube video url{ https://www.youtube.com/watch?v=Z_mXDvZQ6dU} where a neutrophil chases a bacteria cell moving in random directions, we present a variant of the cop and robber game on graphs called the tipsy cop and drunken robber game. In this game, we place a tipsy cop and a drunken robber at different vertices of a finite connected graph $G$. The game consists of independent moves where the robber begins the game by moving to an adjacent vertex from where he began, this is then followed by the cop moving to an adjacent vertex from where she began. Since the robber is inebriated, he takes random walks on the graph, while the cop being tipsy means that her movements are sometimes random and sometimes intentional. Our main results give formulas for the probability that the robber is still free from capture after $m$ moves of this game on highly symmetric graphs, such as the complete graphs, complete bipartite graphs, and cycle graphs. We also give the expected encounter time between the cop and robber for these families of graphs. We end the manuscript by presenting a general method for computing such probabilities and also detail a variety of directions for future research.
Let $S_k(n)$ be the maximum number of orientations of an $n$-vertex graph $G$ in which no copy of $K_k$ is strongly connected. For all integers $n$, $kgeq 4$ where $ngeq 5$ or $kgeq 5$, we prove that $S_k(n) = 2^{t_{k-1}(n)}$, where $t_{k-1}(n)$ is the number of edges of the $n$-vertex $(k-1)$-partite Turan graph $T_{k-1}(n)$, and that $T_{k-1}(n)$ is the only $n$-vertex graph with this number of orientations. Furthermore, $S_4(4) = 40$ and this maximality is achieved only by $K_4$.