Do you want to publish a course? Click here

Tipsy cop and drunken robber: a variant of the cop and robber game on graphs

358   0   0.0 ( 0 )
 Added by Erik Insko
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Motivated by a biological scenario illustrated in the YouTube video url{ https://www.youtube.com/watch?v=Z_mXDvZQ6dU} where a neutrophil chases a bacteria cell moving in random directions, we present a variant of the cop and robber game on graphs called the tipsy cop and drunken robber game. In this game, we place a tipsy cop and a drunken robber at different vertices of a finite connected graph $G$. The game consists of independent moves where the robber begins the game by moving to an adjacent vertex from where he began, this is then followed by the cop moving to an adjacent vertex from where she began. Since the robber is inebriated, he takes random walks on the graph, while the cop being tipsy means that her movements are sometimes random and sometimes intentional. Our main results give formulas for the probability that the robber is still free from capture after $m$ moves of this game on highly symmetric graphs, such as the complete graphs, complete bipartite graphs, and cycle graphs. We also give the expected encounter time between the cop and robber for these families of graphs. We end the manuscript by presenting a general method for computing such probabilities and also detail a variety of directions for future research.



rate research

Read More

In this paper we analyze and model three open problems posed by Harris, Insko, Prieto-Langarica, Stoisavljevic, and Sullivan in 2020 concerning the tipsy cop and robber game on graphs. The three different scenarios we model account for different biological scenarios. The first scenario is when the cop and robber have a consistent tipsiness level though the duration of the game; the second is when the cop and robber sober up as a function of time; the third is when the cop and robber sober up as a function of the distance between them. Using Markov chains to model each scenario we calculate the probability of a game persisting through $mathbf{M}$ rounds of the game and the expected game length given different starting positions and tipsiness levels for the cop and robber.
We show that the cop number of every generalized Petersen graph is at most 4. The strategy is to play a modified game of cops and robbers on an infinite cyclic covering space where the objective is to capture the robber or force the robber towards an end of the infinite graph. We prove that finite isometric subtrees are 1-guardable and apply this to determine the exact cop number of some families of generalized Petersen graphs. We also extend these ideas to prove that the cop number of any connected I-graph is at most 5.
We introduce the game of Surrounding Cops and Robbers on a graph, as a variant of the original game of Cops and Robbers. In contrast to the original game in which the cops win by occupying the same vertex as the robber, they now win by occupying each of the robbers neighbouring vertices. We denote by $sigma(G)$ the {em surrounding cop number} of $G$, namely the least number of cops required to surround a robber in the graph $G$. We present a number of results regarding this parameter, including general bounds as well as exact values for several classes of graphs. Particular classes of interest include product graphs, graphs arising from combinatorial designs, and generalised Petersen graphs.
It is known that the cop number $c(G)$ of a connected graph $G$ can be bounded as a function of the genus of the graph $g(G)$. The best known bound, that $c(G) leq leftlfloor frac{3 g(G)}{2}rightrfloor + 3$, was given by Schr{o}der, who conjectured that in fact $c(G) leq g(G) + 3$. We give the first improvement to Schr{o}ders bound, showing that $c(G) leq frac{4g(G)}{3} + frac{10}{3}$.
textit{Voronoi game} is a geometric model of competitive facility location problem played between two players. Users are generally modeled as points uniformly distributed on a given underlying space. Each player chooses a set of points in the underlying space to place their facilities. Each user avails service from its nearest facility. Service zone of a facility consists of the set of users which are closer to it than any other facility. Payoff of each player is defined by the quantity of users served by all of its facilities. The objective of each player is to maximize their respective payoff. In this paper we consider the two players {it Voronoi game} where the underlying space is a road network modeled by a graph. In this framework we consider the problem of finding $k$ optimal facility locations of Player 2 given any placement of $m$ facilities by Player 1. Our main result is a dynamic programming based polynomial time algorithm for this problem on tree network. On the other hand, we show that the problem is strongly $mathcal{NP}$-complete for graphs. This proves that finding a winning strategy of P2 is $mathcal{NP}$-complete. Consequently, we design an $1-frac{1}{e}$ factor approximation algorithm, where $e approx 2.718$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا