Do you want to publish a course? Click here

Stopper-Controller Games embedded in Single-Player Control Problems

77   0   0.0 ( 0 )
 Added by Marvin S. Mueller
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In 2002, Benjamin Jourdain and Claude Martini discovered that for a class of payoff functions, the pricing problem for American options can be reduced to pricing of European options for an appropriately associated payoff, all within a Black-Scholes framework. This discovery has been investigated in great detail by Soren Christensen, Jan Kallsen and Matthias Lenga in a recent work in 2020. In the present work we prove that this phenomenon can be observed in a wider context, and even holds true in a setup of non-linear stochastic processes. We analyse this problem from both probabilistic and analytic viewpoints. In the classical situation, Jourdain and Martini used this method to approximate prices of American put options. The broader applicability now potentially covers non-linear frameworks such as model uncertainty and controller-and-stopper-games.



rate research

Read More

We study a two-player nonzero-sum stochastic differential game where one player controls the state variable via additive impulses while the other player can stop the game at any time. The main goal of this work is characterize Nash equilibria through a verification theorem, which identifies a new system of quasi-variational inequalities whose solution gives equilibrium payoffs with the correspondent strategies. Moreover, we apply the verification theorem to a game with a one-dimensional state variable, evolving as a scaled Brownian motion, and with linear payoff and costs for both players. Two types of Nash equilibrium are fully characterized, i.e. semi-explicit expressions for the equilibrium strategies and associated payoffs are provided. Both equilibria are of threshold type: in one equilibrium players intervention are not simultaneous, while in the other one the first player induces her competitor to stop the game. Finally, we provide some numerical results describing the qualitative properties of both types of equilibrium.
Mean-field games with absorption is a class of games, that have been introduced in Campi and Fischer [7] and that can be viewed as natural limits of symmetric stochastic differential games with a large number of players who, interacting through a mean-field, leave the game as soon as their private states hit some given boundary. In this paper, we push the study of such games further, extending their scope along two main directions. First, a direct dependence on past absorptions has been introduced in the drift of players state dynamics. Second, the boundedness of coefficients and costs has been considerably relaxed including drift and costs with linear growth. Therefore, the mean-field interaction among the players takes place in two ways: via the empirical sub-probability measure of the surviving players and through a process representing the fraction of past absorptions over time. Moreover, relaxing the boundedness of the coefficients allows for more realistic dynamics for players private states. We prove existence of solutions of the mean-field game in strict as well as relaxed feedback form. Finally, we show that such solutions induce approximate Nash equilibria for the $N$-player game with vanishing error in the mean-field limit as $N to infty$.
Forcing finite state mean field games by a relevant form of common noise is a subtle issue, which has been addressed only recently. Among others, one possible way is to subject the simplex valued dynamics of an equilibrium by a so-called Wright-Fisher noise, very much in the spirit of stochastic models in population genetics. A key feature is that such a random forcing preserves the structure of the simplex, which is nothing but, in this setting, the probability space over the state space of the game. The purpose of this article is hence to elucidate the finite player version and, accordingly, to prove that $N$-player equilibria indeed converge towards the solution of such a kind of Wright-Fisher mean field game. Whilst part of the analysis is made easier by the fact that the corresponding master equation has already been proved to be uniquely solvable under the presence of the common noise, it becomes however more subtle than in the standard setting because the mean field interaction between the players now occurs through a weighted empirical measure. In other words, each player carries its own weight, which hence may differ from $1/N$ and which, most of all, evolves with the common noise.
We study the computational complexity of the Buttons & Scissors game and obtain sharp thresholds with respect to several parameters. Specifically we show that the game is NP-complete for $C = 2$ colors but polytime solvable for $C = 1$. Similarly the game is NP-complete if every color is used by at most $F = 4$ buttons but polytime solvable for $F leq 3$. We also consider restrictions on the board size, cut directions, and cut sizes. Finally, we introduce several natural two-play
In this paper we consider non zero-sum games where multiple players control the drift of a process, and their payoffs depend on its ergodic behaviour. We establish their connection with systems of Ergodic BSDEs, and prove the existence of a Nash equilibrium under the generalised Isaacs conditions. We also study the case of interacting players of different type.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا