Do you want to publish a course? Click here

Robust Compressed Sensing using Generative Models

139   0   0.0 ( 0 )
 Added by Ajil Jalal
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The goal of compressed sensing is to estimate a high dimensional vector from an underdetermined system of noisy linear equations. In analogy to classical compressed sensing, here we assume a generative model as a prior, that is, we assume the vector is represented by a deep generative model $G: mathbb{R}^k rightarrow mathbb{R}^n$. Classical recovery approaches such as empirical risk minimization (ERM) are guaranteed to succeed when the measurement matrix is sub-Gaussian. However, when the measurement matrix and measurements are heavy-tailed or have outliers, recovery may fail dramatically. In this paper we propose an algorithm inspired by the Median-of-Means (MOM). Our algorithm guarantees recovery for heavy-tailed data, even in the presence of outliers. Theoretically, our results show our novel MOM-based algorithm enjoys the same sample complexity guarantees as ERM under sub-Gaussian assumptions. Our experiments validate both aspects of our claims: other algorithms are indeed fragile and fail under heavy-tailed and/or corrupted data, while our approach exhibits the predicted robustness.



rate research

Read More

In compressed sensing, a small number of linear measurements can be used to reconstruct an unknown signal. Existing approaches leverage assumptions on the structure of these signals, such as sparsity or the availability of a generative model. A domain-specific generative model can provide a stronger prior and thus allow for recovery with far fewer measurements. However, unlike sparsity-based approaches, existing methods based on generative models guarantee exact recovery only over their support, which is typically only a small subset of the space on which the signals are defined. We propose Sparse-Gen, a framework that allows for sparse deviations from the support set, thereby achieving the best of both worlds by using a domain specific prior and allowing reconstruction over the full space of signals. Theoretically, our framework provides a new class of signals that can be acquired using compressed sensing, reducing classic sparse vector recovery to a special case and avoiding the restrictive support due to a generative model prior. Empirically, we observe consistent improvements in reconstruction accuracy over competing approaches, especially in the more practical setting of transfer compressed sensing where a generative model for a data-rich, source domain aids sensing on a data-scarce, target domain.
We introduce a recursive algorithm for performing compressed sensing on streaming data. The approach consists of a) recursive encoding, where we sample the input stream via overlapping windowing and make use of the previous measurement in obtaining the next one, and b) recursive decoding, where the signal estimate from the previous window is utilized in order to achieve faster convergence in an iterative optimization scheme applied to decode the new one. To remove estimation bias, a two-step estimation procedure is proposed comprising support set detection and signal amplitude estimation. Estimation accuracy is enhanced by a non-linear voting method and averaging estimates over multiple windows. We analyze the computational complexity and estimation error, and show that the normalized error variance asymptotically goes to zero for sublinear sparsity. Our simulation results show speed up of an order of magnitude over traditional CS, while obtaining significantly lower reconstruction error under mild conditions on the signal magnitudes and the noise level.
This letter proposes a sparse diffusion steepest-descent algorithm for one bit compressed sensing in wireless sensor networks. The approach exploits the diffusion strategy from distributed learning in the one bit compressed sensing framework. To estimate a common sparse vector cooperatively from only the sign of measurements, steepest-descent is used to minimize the suitable global and local convex cost functions. A diffusion strategy is suggested for distributive learning of the sparse vector. Simulation results show the effectiveness of the proposed distributed algorithm compared to the state-of-the-art non distributive algorithms in the one bit compressed sensing framework.
The CSGM framework (Bora-Jalal-Price-Dimakis17) has shown that deep generative priors can be powerful tools for solving inverse problems. However, to date this framework has been empirically successful only on certain datasets (for example, human faces and MNIST digits), and it is known to perform poorly on out-of-distribution samples. In this paper, we present the first successful application of the CSGM framework on clinical MRI data. We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions. Furthermore, our experiments and theory show that posterior sampling is robust to changes in the ground-truth distribution and measurement process. Our code and models are available at: url{https://github.com/utcsilab/csgm-mri-langevin}.
A pre-trained generator has been frequently adopted in compressed sensing (CS) due to its ability to effectively estimate signals with the prior of NNs. In order to further refine the NN-based prior, we propose a framework that allows the generator to utilize additional information from a given measurement for prior learning, thereby yielding more accurate prediction for signals. As our framework has a simple form, it is easily applied to existing CS methods using pre-trained generators. We demonstrate through extensive experiments that our framework exhibits uniformly superior performances by large margin and can reduce the reconstruction error up to an order of magnitude for some applications. We also explain the experimental success in theory by showing that our framework can slightly relax the stringent signal presence condition, which is required to guarantee the success of signal recovery.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا