No Arabic abstract
A tidal disruption event (TDE) occurs when a star plunges through a supermassive black holes tidal radius, at which point the stars self-gravity is overwhelmed by the tidal gravity of the black hole. In a partial TDE, where the star does not reach the full disruption radius, only a fraction of the stars mass is tidally stripped while the rest remains intact in the form of a surviving core. Analytical arguments have recently suggested that the temporal scaling of the fallback rate of debris to the black hole asymptotes to $t^{-9/4}$ for partial disruptions, effectively independently of the mass of the intact core. We present hydrodynamical simulations that verify the existence of this predicted, $t^{-9/4}$ scaling. We also define a break timescale -- the time at which the fallback rate transitions from a $t^{-5/3}$ scaling to the characteristic $t^{-9/4}$ scaling -- and measure this break timescale as a function of the impact parameter and the surviving core mass. These results deepen our understanding of the properties and breadth of possible fallback curves expected from TDEs and will therefore facilitate more accurate interpretation of data from wide-field surveys.
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
Recent claimed detections of tidal disruption events (TDEs) in multi-wavelength data have opened potential new windows into the evolution and properties of otherwise dormant supermassive black holes (SMBHs) in the centres of galaxies. At present, there are several dozen TDE candidates, which share some properties and differ in others. The range in properties is broad enough to overlap other transient types, such as active galactic nuclei (AGN) and supernovae (SNe), which can make TDE classification ambiguous. A further complication is that TDE signatures have not been uniformly observed to similar sensitivities or even targeted across all candidates. This chapter reviews those events that are unusual relative to other TDEs, including the possibility of TDEs in pre-existing AGN, and summarises those characteristics thought to best distinguish TDEs from continuously accreting AGN, strongly flaring AGN, SNe, and Gamma-Ray Bursts (GRBs), as well as other potential impostors like stellar collisions, micro-TDEs, and circumbinary accretion flows. We conclude that multiple observables should be used to classify any one event as a TDE. We also consider the TDE candidate population as a whole, which, for certain host galaxy or SMBH characteristics, is distinguishable statistically from non-TDEs, suggesting that at least some TDE candidates do in fact arise from SMBH-disrupted stars.
We present the STARS library, a grid of tidal disruption event (TDE) simulations interpolated to provide the mass fallback rate ($dM/dt$) to the black hole for a main-sequence star of any stellar mass, stellar age, and impact parameter. We use a one-dimensional stellar evolution code to construct stars with accurate stellar structures and chemical abundances, then perform tidal disruption simulations in a three-dimensional adaptive-mesh hydrodynamics code with a Helmholtz equation of state, in unprecedented resolution: from 131 to 524 cells across the diameter of the star. The interpolated library of fallback rates is available on GitHub (https://github.com/jamielaw-smith/STARS_library) and version 1.0.0 is archived on Zenodo; one can query the library for any stellar mass, stellar age, and impact parameter. We provide new fitting formulae for important disruption quantities ($beta_{rm crit}, Delta M, dot M_{rm peak}, t_{rm peak}, n_infty$) as a function of stellar mass, stellar age, and impact parameter. Each of these quantities vary significantly with stellar mass and stellar age, but we are able to reduce all of our simulations to a single relationship that depends only on stellar structure, characterized by a single parameter $rho_c/barrho$, and impact parameter $beta$. We also find that, in general, more centrally concentrated stars have steeper $dM/dt$ rise slopes and shallower decay slopes. For the same $Delta M$, the $dM/dt$ shape varies significantly with stellar mass, promising the potential determination of stellar properties from the TDE light curve alone. The $dM/dt$ shape depends strongly on stellar structure and to a certain extent stellar mass, meaning that fitting TDEs using this library offers a better opportunity to determine the nature of the disrupted star and the black hole.
Tidal disruption events occur rarely in any individual galaxy. Over the last decade, however, time-domain surveys have begun to accumulate statistical samples of these flares. What dynamical processes are responsible for feeding stars to supermassive black holes? At what rate are stars tidally disrupted in realistic galactic nuclei? What may we learn about supermassive black holes and broader astrophysical questions by estimating tidal disruption event rates from observational samples of flares? These are the questions we aim to address in this Chapter, which summarizes current theoretical knowledge about rates of stellar tidal disruption, and compares theoretical predictions to the current state of observations.
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs. Then, we show that these events provide valuable information on many aspects of jet physics from a new prospective, including the on-and-off switch of jet launching, jet propagation through the ambient medium, $gamma/$X-ray radiation mechanism, jet composition, and the multi-messenger picture. Finally, open questions and future prospects in this field are summarized.