No Arabic abstract
Molecular dynamics simulations require barostats to be performed at constant pressure. The usual recipe is to employ the Berendsen barostat first, which displays a first-order volume relaxation efficient in equilibration but results in incorrect volume fluctuations, followed by a second order or Monte Carlo barostat for production runs. In this paper, we introduce stochastic cell rescaling, a first-order barostat that samples the correct volume fluctuations by including a suitable noise term. The algorithm is shown to report volume fluctuations compatible with the isobaric ensemble and its anisotropic variant is tested on a membrane simulation. Stochastic cell rescaling can be straightforwardly implemented in existing codes and can be used effectively both in equilibration and in production phases.
Molecular dynamics is one of the most commonly used approaches for studying the dynamics and statistical distributions of many physical, chemical, and biological systems using atomistic or coarse-grained models. It is often the case, however, that the interparticle forces drive motion on many time scales, and the efficiency of a calculation is limited by the choice of time step, which must be sufficiently small that the fastest force components are accurately integrated. Multiple time-stepping algorithms partially alleviate this inefficiency by assigning to each time scale an appropriately chosen step-size. However, such approaches are limited by resonance phenomena, wherein motion on the fastest time scales limits the step sizes associated with slower time scales. In atomistic models of biomolecular systems, for example, resonances limit the largest time step to around 5-6 fs. In this paper, we introduce a set of stochastic isokinetic equations of motion that are shown to be rigorously ergodic and that can be integrated using a multiple time-stepping algorithm that can be easily implemented in existing molecular dynamics codes. The technique is applied to a simple, illustrative problem and then to a more realistic system, namely, a flexible water model. Using this approach outer time steps as large as 100 fs are shown to be possible.
Kinetic energy equipartition is a premise for many deterministic and stochastic molecular dynamics methods that aim at sampling a canonical ensemble. While this is expected for real systems, discretization errors introduced by the numerical integration may distort such assumption. Fortunately, backward error analysis allows us to identify the quantity that is actually subject to equipartition. This is related to a shadow Hamiltonian, which coincides with the specified Hamiltonian only when the time-step size approaches zero. This paper deals with discretization effects in a straightforward way. With a small computational overhead, we obtain refine
A powerful control method in experimental quantum computing is the use of spin echoes, employed to select a desired term in the systems internal Hamiltonian, while refocusing others. Here we address a more general problem, describing a method to not only turn on and off particular interactions but also to rescale their strengths so that we can generate any desired effective internal Hamiltonian. We propose an algorithm based on linear programming for achieving time-optimal rescaling solutions in fully coupled systems of tens of qubits, which can be modified to obtain near time-optimal solutions for rescaling systems with hundreds of qubits.
A fundamental question in biology is how cell populations evolve into different subtypes based on homogeneous processes at the single cell level. Here we show that population bimodality can emerge even when biological processes are homogenous at the cell level and the environment is kept constant. Our model is based on the stochastic partitioning of a cell component with an optimal copy number. We show that the existence of unimodal or bimodal distributions depends on the variance of partition errors and the growth rate tolerance around the optimal copy number. In particular, our theory provides a consistent explanation for the maintenance of aneuploid states in a population. The proposed model can also be relevant for other cell components such as mitochondria and plasmids, whose abundances affect the growth rate and are subject to stochastic partition at cell division.
We show that a recently introduced stochastic thermostat [J. Chem. Phys. 126 (2007) 014101] can be considered as a global version of the Langevin thermostat. We compare the global scheme and the local one (Langevin) from a formal point of view and through practical calculations on a model Lennard-Jones liquid. At variance with the local scheme, the global thermostat preserves the dynamical properties for a wide range of coupling parameters, and allows for a faster sampling of the phase-space.