The past decade has witnessed the burgeoning discovery of a variety of topological states of matter with distinct nontrivial band topologies. Thus far, most of materials studied possess two-dimensional or three-dimensional electronic structures, with only a few exceptions that host quasi-one-dimensional (quasi-1D) topological electronic properties. Here we present the clear-cut evidence for Dirac fermions in the quasi-1D telluride TaNiTe5. We show that its transport behaviors are highly anisotropic and we observe nontrivial Berry phases via the quantum oscillation measurements. The nontrivial band topology is further corroborated by first-principles calculations. Our results may help to guide the future quest for topological states in this new family of quasi-1D ternary chalcogenides.
A correlation between lattice parameters, oxygen composition, and the thermoelectric and Hall coefficients is presented for single-crystal Li(0.9)Mo(6)O(17), a quasi-one-dimensional (Q1D) metallic compound. The possibility that this compound is a compensated metal is discussed in light of a substantial variability observed in the literature for these transport coefficients.
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo$_2$Ga$_8$. Resistivity measurements at ambient pressure reveal the onset of coherence at $T^*approx 20,$K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 K to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 K and 2 K and reaches 800 mJ/mol K$^2$ at 1 K, suggesting that CeCo$_2$Ga$_8$ is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature-pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional (1D) spin chain from 300 K down to $T^*$, and first-principles calculations predict flat Fermi surfaces for the itinerant $f$-electron bands. These suggest that CeCo$_2$Ga$_8$ is a rare example of the quasi-1D Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh$_2$Si$_2$ family. The study of the quasi-one-dimensional CeCo$_2$Ga$_8$ family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.
Magnetic systems composed of weakly coupled spin-1/2 chains are fertile ground for hosting the fractional magnetic excitations that are intrinsic to interacting fermions in one-dimension (1D). However, the exotic physics arising from the quantum many-body interactions beyond 1D are poorly understood in materials of this class. Spinons and psinons are two mutually exclusive low-energy magnetic quasiparticles; the excitation seen depends on the ground state of the spin chain. Here, we present inelastic neutron scattering and neutron diffraction evidence for their coexistence in SrCo$_{2}$V$_{2}$O$_{8}$ at milli-Kelvin temperatures in part of the Neel phase (2.4 T $leq$ $mu_mathrm{{0}}$H $<$ 3.9 T) and possibly also the field-induced spin density wave phase up to the highest field probed ($mu_mathrm{{0}}$H $geq$ 3.9 T, $mu_mathrm{{0}}$H$_mathbf{mathrm{{max}}}$ = 5.5 T). These results unveil a novel spatial phase inhomogeneity for the weakly coupled spin chains in this compound. This quantum dynamical phase separation is a new phenomenon in quasi-1D quantum magnets, highlighting the non-trivial consequences of inter-chain coupling.
Nodal semimetals are a unique platform to explore topological signatures of the unusual band structure that can manifest by accumulating a nontrivial phase in quantum oscillations. Here we report a study of the de Haasvan Alphen oscillations of the candidate topological nodal line semimetal CaAgAs using torque measurements in magnetic fields up to 45 T. Our results are compared with calculations for a toroidal Fermi surface originating from the nodal ring. We find evidence of a nontrivial Berry phase shift only in one of the oscillatory frequencies. We interpret this as a Berry phase arising from the semi-classical electronic Landau orbit which links with the nodal ring when the magnetic field lies in the mirror (ab) plane. Furthermore, additional Berry phase accumulates while rotating the magnetic field for the second orbit in the same orientation which does not link with the nodal ring. These effects are expected in CaAgAs due to the lack of inversion symmetry. Our study experimentally demonstrates that CaAgAs is an ideal platform for exploring the physics of nodal line semimetals and our approach can be extended to other materials in which trivial and nontrivial oscillations are present.
Electron motion in crystals is governed by the coupling between crystal momentum and internal degrees of freedom such as spin implicit in the band structure. The description of this coupling in terms of a momentum-dependent effective field and the resultant Berry phase has greatly advanced our understanding of diverse phenomena including various Hall effects and has lead to the discovery of new states of matter exemplified by topological insulators. While experimental studies on topological systems have focused on the gapless states that emerge at the surfaces or edges, the underlying nontrivial topology in the bulk has not been manifested. Here we report the observation of Berrys phase in magneto-oscillations and quantum Hall effects of a coupled electron-hole system hosted in quantum wells with inverted bands. In contrast to massless Dirac fermions in graphene, for which the Berry phase $Gamma$ is quantized at $pi$, we observe that $Gamma$ varies with the Fermi level $E_mathrm{F}$, passing through $pi$ as $E_mathrm{F}$ traverses the energy gap that opens due to electron-hole hybridization. We show that the evolution of $Gamma$ is a manifestation of the pseudospin texture that encodes the momentum-dependent electron-hole coupling and is therefore a bulk signature of the nontrivial band topology.
C. Q. Xu
,Y. Liu
,P. G. Cai
.
(2020)
.
"Anisotropic transport and quantum oscillations in the quasi-one-dimensional TaNiTe5: Evidence for the nontrivial band topology"
.
Xiaofeng Xu
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا