Do you want to publish a course? Click here

Mode hopping in oscillating systems with stochastic delays

78   0   0.0 ( 0 )
 Added by Otti D'Huys
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a noisy oscillator with pulse delayed feedback, theoretically and in an electronic experimental implementation. Without noise, this system has multiple stable periodic regimes. We consider two types of noise: i) phase noise acting on the oscillator state variable and ii) stochastic fluctuations of the coupling delay. For both types of stochastic perturbations the system hops between the deterministic regimes, but it shows dramatically different scaling properties for different types of noise. The robustness to conventional phase noise increases with coupling strength. However for stochastic variations in the coupling delay, the lifetimes decrease exponentially with the coupling strength. We provide an analytic explanation for these scaling properties in a linearised model. Our findings thus indicate that the robustness of a system to stochastic perturbations strongly depends on the nature of these perturbations.



rate research

Read More

A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a non-delayed Langevin equation, which allows us to analytically compute the distribution of frequencies, and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators.
112 - V.A. Gusev , A.E. Hramov , 2006
We consider an approach to the analysis of nonstationary processes based on the application of wavelet basis sets constructed using segments of the analyzed time series. The proposed method is applied to the analysis of time series generated by a nonlinear system with and without noise
Stochastic feed-in of fluctuating renewable energies is steadily increasing in modern electricity grids and this becomes an important risk factor for maintaining power grid stability. Here we study the impact of wind power feed-in on the short-term frequency fluctuations in power grids based on an IEEE test grid structure, the swing equation for the dynamics of voltage phase angles, and a series of measured wind speed data. External control measures are accounted for by adjusting the grid state to the average power feed-in on a time scale of one minute. The wind power is injected at a single node by replacing one of the conventional generator nodes in the test grid by a wind farm. We determine histograms of local frequencies for a large number of one-minute wind speed sequences taken from the measured data and for different injection nodes. These histograms exhibit a common type of shape, which can be described by a Gaussian distribution for small frequencies and a nearly exponentially decaying tail part. Non-Gaussian features become particularly pronounced for wind power injection at locations, which are weakly connected to the main grid structure. This effect is only present when taking into account the heterogeneities in transmission line and node properties of the grid, while it disappears upon homogenizing of these features. The standard deviation of the frequency fluctuations increases linearly with the average injected wind power.
We analyst in detail a new approach to the monitoring and forecasting of the onset of transitions in high dimensional complex systems (see Phys. Rev. Lett . vol. 113, 264102 (2014)) by application to the Tangled Nature Model of evolutionary ecology and high dimensional replicator systems with a stochastic element. A high dimensional stability matrix is derived for the mean field approximation to the stochastic dynamics. This allows us to determine the stability spectrum about the observed quasi-stable configurations. From overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean field approximation we are able to construct a good early-warning indicator of the transitions occurring intermittently. Inspired by these findings we are able to suggest an alternative simplified applicable forecasting procedure which only makes use of observable data streams.
Many complex systems occurring in the natural or social sciences or economics are frequently described on a microscopic level, e.g., by lattice- or agent-based models. To analyze the states of such systems and their bifurcation structure on the level of macroscopic observables, one has to rely on equation-free methods like stochastic continuation. Here, we investigate how to improve stochastic continuation techniques by adaptively choosing the parameters of the algorithm. This allows one to obtain bifurcation diagrams quite accurately, especially near bifurcation points. We introduce lifting techniques which generate microscopic states with a naturally grown structure, which can be crucial for a reliable evaluation of macroscopic quantities. We show how to calculate fixed points of fluctuating functions by employing suitable linear fits. This procedure offers a simple measure of the statistical error. We demonstrate these improvements by applying the approach in analyses of (i) the Ising model in two dimensions, (ii) an active Ising model, and (iii) a stochastic Swift-Hohenberg model. We conclude by discussing the abilities and remaining problems of the technique.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا