Do you want to publish a course? Click here

Heterogeneities in electricity grids strongly enhance non-Gaussian features of frequency fluctuations under stochastic power input

109   0   0.0 ( 0 )
 Added by Philipp Maass
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stochastic feed-in of fluctuating renewable energies is steadily increasing in modern electricity grids and this becomes an important risk factor for maintaining power grid stability. Here we study the impact of wind power feed-in on the short-term frequency fluctuations in power grids based on an IEEE test grid structure, the swing equation for the dynamics of voltage phase angles, and a series of measured wind speed data. External control measures are accounted for by adjusting the grid state to the average power feed-in on a time scale of one minute. The wind power is injected at a single node by replacing one of the conventional generator nodes in the test grid by a wind farm. We determine histograms of local frequencies for a large number of one-minute wind speed sequences taken from the measured data and for different injection nodes. These histograms exhibit a common type of shape, which can be described by a Gaussian distribution for small frequencies and a nearly exponentially decaying tail part. Non-Gaussian features become particularly pronounced for wind power injection at locations, which are weakly connected to the main grid structure. This effect is only present when taking into account the heterogeneities in transmission line and node properties of the grid, while it disappears upon homogenizing of these features. The standard deviation of the frequency fluctuations increases linearly with the average injected wind power.



rate research

Read More

Many networks must maintain synchrony despite the fact that they operate in noisy environments. Important examples are stochastic inertial oscillators, which are known to exhibit fluctuations with broad tails in many applications, including electric power networks with renewable energy sources. Such non-Gaussian fluctuations can result in rare network desynchronization. Here we build a general theory for inertial oscillator network desynchronization by non-Gaussian noise. We compute the rate of desynchronization and show that higher-moments of noise enter at specific powers of coupling: either speeding up or slowing down the rate exponentially depending on how noise statistics match the statistics of a networks slowest mode. Finally, we use our theory to introduce a technique that drastically reduces the effective description of network desynchronization. Most interestingly, when instability is associated with a single edge, the reduction is to one stochastic oscillator.
Behavioral homogeneity is often critical for the functioning of network systems of interacting entities. In power grids, whose stable operation requires generator frequencies to be synchronized--and thus homogeneous--across the network, previous work suggests that the stability of synchronous states can be improved by making the generators homogeneous. Here, we show that a substantial additional improvement is possible by instead making the generators suitably heterogeneous. We develop a general method for attributing this counterintuitive effect to converse symmetry breaking, a recently established phenomenon in which the system must be asymmetric to maintain a stable symmetric state. These findings constitute the first demonstration of converse symmetry breaking in real-world systems, and our method promises to enable identification of this phenomenon in other networks whose functions rely on behavioral homogeneity.
The stable operation of the electric power grid relies on a precisely synchronized state of all generators and machines. All machines rotate at exactly the same frequency with fixed phase differences, leading to steady power flows throughout the grid. Whether such a steady state exists for a given network is of eminent practical importance. The loss of a steady state typically leads to power outages up to a complete blackout. But also the existence of multiple steady states is undesirable, as it can lead to sudden transitions, circulating flows and eventually also to power outages. Steady states are typically calculated numerically, but this approach gives only limited insight into the existence and (non-)uniqueness of steady states. Analytic results are available only for special network configuration, in particular for grids with negligible Ohmic losses or radial networks without any loops. In this article, we introduce a method to systematically construct the solutions of the real power load-flow equations in the presence of Ohmic losses. We calculate the steady states explicitly for elementary networks demonstrating different mechanisms leading to multistability. Our results also apply to models of coupled oscillators which are widely used in theoretical physics and mathematical biology.
Frequency fluctuations in power grids, caused by unpredictable renewable energy sources, consumer behavior and trading, need to be balanced to ensure stable grid operation. Standard smart grid solutions to mitigate large frequency excursions are based on centrally collecting data and give rise to security and privacy concerns. Furthermore, control of fluctuations is often tested by employing Gaussian perturbations. Here, we demonstrate that power grid frequency fluctuations are in general non-Gaussian, implying that large excursions are more likely than expected based on Gaussian modeling. We consider real power grid frequency measurements from Continental Europe and compare them to stochastic models and predictions based on Fokker-Planck equations. Furthermore, we review a decentral smart grid control scheme to limit these fluctuations. In particular, we derive a scaling law of how decentralized control actions reduce the magnitude of frequency fluctuations and demonstrate the power of these theoretical predictions using a test grid. Overall, we find that decentral smart grid control may reduce grid frequency excursions due to both Gaussian and non-Gaussian power fluctuations and thus offers an alternative pathway for mitigating fluctuation-induced risks.
Full orbit dynamics of charged particles in a $3$-dimensional helical magnetic field in the presence of $alpha$-stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value of the power law decay exponents are linearly proportional to the Levy index $alpha$. The observed anomalous non-Gaussian statistics of the particles Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا